| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8* | ⊢  |
| : , : , : , :  |
1 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.general_len |
2 | reference | 109 | ⊢  |
3 | instantiation | 153 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
4 | instantiation | 153 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
5 | reference | 13 | ⊢  |
6 | instantiation | 134, 166, 14 | ⊢  |
| : , : , :  |
7 | instantiation | 134, 79, 15 | ⊢  |
| : , : , :  |
8 | instantiation | 113, 9, 10 | ⊢  |
| : , : , :  |
9 | instantiation | 11, 146, 12, 13, 14, 15 | ⊢  |
| : , : , : , :  |
10 | instantiation | 82, 145, 128, 16, 147, 129, 17, 156, 60, 18* | ⊢  |
| : , : , : , : , : , :  |
11 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
12 | instantiation | 153 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
13 | instantiation | 153 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
14 | instantiation | 19, 156, 21 | ⊢  |
| : , : , :  |
15 | instantiation | 20, 156, 60, 21 | ⊢  |
| : , : , :  |
16 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat7 |
17 | instantiation | 22 | ⊢  |
| : , : , : , : , : , : , :  |
18 | instantiation | 113, 23, 24 | ⊢  |
| : , : , :  |
19 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
20 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
21 | instantiation | 25 | ⊢  |
| :  |
22 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
23 | instantiation | 125, 119 | ⊢  |
| : , : , :  |
24 | instantiation | 82, 145, 128, 26, 147, 27, 28, 29, 156, 60, 30* | ⊢  |
| : , : , : , : , : , :  |
25 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
26 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat6 |
27 | instantiation | 138 | ⊢  |
| : , :  |
28 | instantiation | 31 | ⊢  |
| : , : , : , : , : , :  |
29 | instantiation | 164, 158, 32 | ⊢  |
| : , : , :  |
30 | instantiation | 113, 33, 34 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
32 | instantiation | 164, 160, 35 | ⊢  |
| : , : , :  |
33 | instantiation | 125, 36 | ⊢  |
| : , : , :  |
34 | instantiation | 82, 145, 128, 78, 147, 37, 38, 39, 156, 60, 40* | ⊢  |
| : , : , : , : , : , :  |
35 | instantiation | 164, 162, 41 | ⊢  |
| : , : , :  |
36 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_1 |
37 | instantiation | 138 | ⊢  |
| : , :  |
38 | instantiation | 42 | ⊢  |
| : , : , : , : , :  |
39 | instantiation | 164, 158, 43 | ⊢  |
| : , : , :  |
40 | instantiation | 113, 44, 45 | ⊢  |
| : , : , :  |
41 | instantiation | 164, 165, 128 | ⊢  |
| : , : , :  |
42 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
43 | instantiation | 164, 160, 46 | ⊢  |
| : , : , :  |
44 | instantiation | 125, 47 | ⊢  |
| : , : , :  |
45 | instantiation | 82, 145, 128, 79, 147, 48, 49, 60, 156, 50* | ⊢  |
| : , : , : , : , : , :  |
46 | instantiation | 164, 162, 51 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_3_1 |
48 | instantiation | 138 | ⊢  |
| : , :  |
49 | instantiation | 52 | ⊢  |
| : , : , : , :  |
50 | instantiation | 113, 53, 54 | ⊢  |
| : , : , :  |
51 | instantiation | 164, 165, 56 | ⊢  |
| : , : , :  |
52 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
53 | instantiation | 125, 55 | ⊢  |
| : , : , :  |
54 | instantiation | 82, 145, 128, 56, 147, 57, 58, 59, 60, 156, 61* | ⊢  |
| : , : , : , : , : , :  |
55 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_4_1 |
56 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
57 | instantiation | 138 | ⊢  |
| : , :  |
58 | instantiation | 62 | ⊢  |
| : , : , :  |
59 | instantiation | 164, 158, 63 | ⊢  |
| : , : , :  |
60 | instantiation | 164, 158, 64 | ⊢  |
| : , : , :  |
61 | instantiation | 113, 65, 66 | ⊢  |
| : , : , :  |
62 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
63 | instantiation | 164, 160, 67 | ⊢  |
| : , : , :  |
64 | instantiation | 164, 160, 68 | ⊢  |
| : , : , :  |
65 | instantiation | 125, 69 | ⊢  |
| : , : , :  |
66 | instantiation | 82, 145, 128, 147, 70, 129, 71, 156, 72* | ⊢  |
| : , : , : , : , : , :  |
67 | instantiation | 164, 162, 73 | ⊢  |
| : , : , :  |
68 | instantiation | 164, 162, 74 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_5_4 |
70 | instantiation | 138 | ⊢  |
| : , :  |
71 | instantiation | 164, 158, 75 | ⊢  |
| : , : , :  |
72 | instantiation | 113, 76, 77 | ⊢  |
| : , : , :  |
73 | instantiation | 164, 165, 78 | ⊢  |
| : , : , :  |
74 | instantiation | 164, 165, 79 | ⊢  |
| : , : , :  |
75 | instantiation | 164, 160, 80 | ⊢  |
| : , : , :  |
76 | instantiation | 125, 81 | ⊢  |
| : , : , :  |
77 | instantiation | 82, 145, 128, 166, 147, 83, 84, 156, 85* | ⊢  |
| : , : , : , : , : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
79 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
80 | instantiation | 164, 162, 86 | ⊢  |
| : , : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_9_1 |
82 | theorem | | ⊢  |
| proveit.numbers.addition.association |
83 | instantiation | 138 | ⊢  |
| : , :  |
84 | instantiation | 164, 158, 87 | ⊢  |
| : , : , :  |
85 | instantiation | 113, 88, 89 | ⊢  |
| : , : , :  |
86 | instantiation | 164, 165, 146 | ⊢  |
| : , : , :  |
87 | instantiation | 164, 160, 90 | ⊢  |
| : , : , :  |
88 | instantiation | 125, 91 | ⊢  |
| : , : , :  |
89 | instantiation | 96, 166, 145, 122, 92, 93*, 94* | ⊢  |
| : , : , : , :  |
90 | instantiation | 164, 162, 95 | ⊢  |
| : , : , :  |
91 | instantiation | 96, 166, 145, 122, 123, 97, 98*, 99* | ⊢  |
| : , : , : , :  |
92 | instantiation | 100, 159, 101, 102, 103, 141*, 104* | ⊢  |
| : , : , :  |
93 | instantiation | 127, 128, 145, 129, 111, 147, 112 | ⊢  |
| : , : , : , : , : , : , :  |
94 | instantiation | 113, 105, 106 | ⊢  |
| : , : , :  |
95 | instantiation | 164, 107, 108 | ⊢  |
| : , : , :  |
96 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.md_nine_add_one |
97 | instantiation | 117, 109 | ⊢  |
| :  |
98 | instantiation | 127, 128, 145, 110, 111, 147, 112 | ⊢  |
| : , : , : , : , : , : , :  |
99 | instantiation | 113, 114, 115 | ⊢  |
| : , : , :  |
100 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
101 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
102 | instantiation | 164, 160, 116 | ⊢  |
| : , : , :  |
103 | instantiation | 117, 118 | ⊢  |
| :  |
104 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_8_1 |
105 | instantiation | 125, 119 | ⊢  |
| : , : , :  |
106 | instantiation | 127, 128, 145, 120, 130, 147, 131 | ⊢  |
| : , : , : , : , : , : , :  |
107 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
108 | instantiation | 121, 166, 122, 123, 124 | ⊢  |
| : , : , :  |
109 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat9 |
110 | instantiation | 138 | ⊢  |
| : , :  |
111 | instantiation | 139, 145 | ⊢  |
| : , :  |
112 | instantiation | 140, 141 | ⊢  |
| : , : , :  |
113 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
114 | instantiation | 125, 126 | ⊢  |
| : , : , :  |
115 | instantiation | 127, 128, 145, 129, 130, 147, 131 | ⊢  |
| : , : , : , : , : , : , :  |
116 | instantiation | 164, 162, 132 | ⊢  |
| : , : , :  |
117 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
118 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat8 |
119 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
120 | instantiation | 138 | ⊢  |
| : , :  |
121 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
122 | instantiation | 134, 133, 136 | ⊢  |
| : , : , :  |
123 | instantiation | 134, 135, 136 | ⊢  |
| : , : , :  |
124 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_0_1 |
125 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
126 | instantiation | 137, 156 | ⊢  |
| :  |
127 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
128 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
129 | instantiation | 138 | ⊢  |
| : , :  |
130 | instantiation | 139, 145 | ⊢  |
| : , :  |
131 | instantiation | 140, 141 | ⊢  |
| : , : , :  |
132 | instantiation | 164, 165, 142 | ⊢  |
| : , : , :  |
133 | instantiation | 144, 166, 142, 143 | ⊢  |
| : , : , : , : , :  |
134 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
135 | instantiation | 144, 145, 146, 147, 148 | ⊢  |
| : , : , : , : , :  |
136 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
137 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
138 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
139 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
140 | axiom | | ⊢  |
| proveit.core_expr_types.tuples.empty_range_def |
141 | instantiation | 149, 150, 151 | ⊢  |
| : , : , :  |
142 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat8 |
143 | instantiation | 152 | ⊢  |
| : , : , : , : , : , : , : , :  |
144 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.in_enumerated_set |
145 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
146 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat9 |
147 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
148 | instantiation | 153 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
149 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
150 | instantiation | 154, 156 | ⊢  |
| :  |
151 | instantiation | 155, 156, 157 | ⊢  |
| : , :  |
152 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
153 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
154 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
155 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
156 | instantiation | 164, 158, 159 | ⊢  |
| : , : , :  |
157 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
158 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
159 | instantiation | 164, 160, 161 | ⊢  |
| : , : , :  |
160 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
161 | instantiation | 164, 162, 163 | ⊢  |
| : , : , :  |
162 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
163 | instantiation | 164, 165, 166 | ⊢  |
| : , : , :  |
164 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
165 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
166 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |