| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 106 | ⊢ |
2 | instantiation | 4, 139, 5, 6, 7, 8 | ⊢ |
| : , : , : , : |
3 | instantiation | 75, 138, 121, 9, 140, 122, 10, 149, 53, 11* | ⊢ |
| : , : , : , : , : , : |
4 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
5 | instantiation | 146 | ⊢ |
| : , : , : , : , : , : , : , : , : |
6 | instantiation | 146 | ⊢ |
| : , : , : , : , : , : , : , : , : |
7 | instantiation | 12, 149, 14 | ⊢ |
| : , : , : |
8 | instantiation | 13, 149, 53, 14 | ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
10 | instantiation | 15 | ⊢ |
| : , : , : , : , : , : , : |
11 | instantiation | 106, 16, 17 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
13 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
14 | instantiation | 18 | ⊢ |
| : |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
16 | instantiation | 118, 112 | ⊢ |
| : , : , : |
17 | instantiation | 75, 138, 121, 19, 140, 20, 21, 22, 149, 53, 23* | ⊢ |
| : , : , : , : , : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
20 | instantiation | 131 | ⊢ |
| : , : |
21 | instantiation | 24 | ⊢ |
| : , : , : , : , : , : |
22 | instantiation | 157, 151, 25 | ⊢ |
| : , : , : |
23 | instantiation | 106, 26, 27 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
25 | instantiation | 157, 153, 28 | ⊢ |
| : , : , : |
26 | instantiation | 118, 29 | ⊢ |
| : , : , : |
27 | instantiation | 75, 138, 121, 71, 140, 30, 31, 32, 149, 53, 33* | ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 157, 155, 34 | ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
30 | instantiation | 131 | ⊢ |
| : , : |
31 | instantiation | 35 | ⊢ |
| : , : , : , : , : |
32 | instantiation | 157, 151, 36 | ⊢ |
| : , : , : |
33 | instantiation | 106, 37, 38 | ⊢ |
| : , : , : |
34 | instantiation | 157, 158, 121 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
36 | instantiation | 157, 153, 39 | ⊢ |
| : , : , : |
37 | instantiation | 118, 40 | ⊢ |
| : , : , : |
38 | instantiation | 75, 138, 121, 72, 140, 41, 42, 53, 149, 43* | ⊢ |
| : , : , : , : , : , : |
39 | instantiation | 157, 155, 44 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_1 |
41 | instantiation | 131 | ⊢ |
| : , : |
42 | instantiation | 45 | ⊢ |
| : , : , : , : |
43 | instantiation | 106, 46, 47 | ⊢ |
| : , : , : |
44 | instantiation | 157, 158, 49 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
46 | instantiation | 118, 48 | ⊢ |
| : , : , : |
47 | instantiation | 75, 138, 121, 49, 140, 50, 51, 52, 53, 149, 54* | ⊢ |
| : , : , : , : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
50 | instantiation | 131 | ⊢ |
| : , : |
51 | instantiation | 55 | ⊢ |
| : , : , : |
52 | instantiation | 157, 151, 56 | ⊢ |
| : , : , : |
53 | instantiation | 157, 151, 57 | ⊢ |
| : , : , : |
54 | instantiation | 106, 58, 59 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
56 | instantiation | 157, 153, 60 | ⊢ |
| : , : , : |
57 | instantiation | 157, 153, 61 | ⊢ |
| : , : , : |
58 | instantiation | 118, 62 | ⊢ |
| : , : , : |
59 | instantiation | 75, 138, 121, 140, 63, 122, 64, 149, 65* | ⊢ |
| : , : , : , : , : , : |
60 | instantiation | 157, 155, 66 | ⊢ |
| : , : , : |
61 | instantiation | 157, 155, 67 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
63 | instantiation | 131 | ⊢ |
| : , : |
64 | instantiation | 157, 151, 68 | ⊢ |
| : , : , : |
65 | instantiation | 106, 69, 70 | ⊢ |
| : , : , : |
66 | instantiation | 157, 158, 71 | ⊢ |
| : , : , : |
67 | instantiation | 157, 158, 72 | ⊢ |
| : , : , : |
68 | instantiation | 157, 153, 73 | ⊢ |
| : , : , : |
69 | instantiation | 118, 74 | ⊢ |
| : , : , : |
70 | instantiation | 75, 138, 121, 159, 140, 76, 77, 149, 78* | ⊢ |
| : , : , : , : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
72 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
73 | instantiation | 157, 155, 79 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
75 | theorem | | ⊢ |
| proveit.numbers.addition.association |
76 | instantiation | 131 | ⊢ |
| : , : |
77 | instantiation | 157, 151, 80 | ⊢ |
| : , : , : |
78 | instantiation | 106, 81, 82 | ⊢ |
| : , : , : |
79 | instantiation | 157, 158, 139 | ⊢ |
| : , : , : |
80 | instantiation | 157, 153, 83 | ⊢ |
| : , : , : |
81 | instantiation | 118, 84 | ⊢ |
| : , : , : |
82 | instantiation | 89, 159, 138, 115, 85, 86*, 87* | ⊢ |
| : , : , : , : |
83 | instantiation | 157, 155, 88 | ⊢ |
| : , : , : |
84 | instantiation | 89, 159, 138, 115, 116, 90, 91*, 92* | ⊢ |
| : , : , : , : |
85 | instantiation | 93, 152, 94, 95, 96, 134*, 97* | ⊢ |
| : , : , : |
86 | instantiation | 120, 121, 138, 122, 104, 140, 105 | ⊢ |
| : , : , : , : , : , : , : |
87 | instantiation | 106, 98, 99 | ⊢ |
| : , : , : |
88 | instantiation | 157, 100, 101 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
90 | instantiation | 110, 102 | ⊢ |
| : |
91 | instantiation | 120, 121, 138, 103, 104, 140, 105 | ⊢ |
| : , : , : , : , : , : , : |
92 | instantiation | 106, 107, 108 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
95 | instantiation | 157, 153, 109 | ⊢ |
| : , : , : |
96 | instantiation | 110, 111 | ⊢ |
| : |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
98 | instantiation | 118, 112 | ⊢ |
| : , : , : |
99 | instantiation | 120, 121, 138, 113, 123, 140, 124 | ⊢ |
| : , : , : , : , : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
101 | instantiation | 114, 159, 115, 116, 117 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
103 | instantiation | 131 | ⊢ |
| : , : |
104 | instantiation | 132, 138 | ⊢ |
| : , : |
105 | instantiation | 133, 134 | ⊢ |
| : , : , : |
106 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
107 | instantiation | 118, 119 | ⊢ |
| : , : , : |
108 | instantiation | 120, 121, 138, 122, 123, 140, 124 | ⊢ |
| : , : , : , : , : , : , : |
109 | instantiation | 157, 155, 125 | ⊢ |
| : , : , : |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
112 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
113 | instantiation | 131 | ⊢ |
| : , : |
114 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
115 | instantiation | 127, 126, 129 | ⊢ |
| : , : , : |
116 | instantiation | 127, 128, 129 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
118 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
119 | instantiation | 130, 149 | ⊢ |
| : |
120 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
121 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
122 | instantiation | 131 | ⊢ |
| : , : |
123 | instantiation | 132, 138 | ⊢ |
| : , : |
124 | instantiation | 133, 134 | ⊢ |
| : , : , : |
125 | instantiation | 157, 158, 135 | ⊢ |
| : , : , : |
126 | instantiation | 137, 159, 135, 136 | ⊢ |
| : , : , : , : , : |
127 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
128 | instantiation | 137, 138, 139, 140, 141 | ⊢ |
| : , : , : , : , : |
129 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
130 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
132 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
133 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
134 | instantiation | 142, 143, 144 | ⊢ |
| : , : , : |
135 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
136 | instantiation | 145 | ⊢ |
| : , : , : , : , : , : , : , : |
137 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
138 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
139 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
140 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
141 | instantiation | 146 | ⊢ |
| : , : , : , : , : , : , : , : , : |
142 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
143 | instantiation | 147, 149 | ⊢ |
| : |
144 | instantiation | 148, 149, 150 | ⊢ |
| : , : |
145 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
146 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
147 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
148 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
149 | instantiation | 157, 151, 152 | ⊢ |
| : , : , : |
150 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
151 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
152 | instantiation | 157, 153, 154 | ⊢ |
| : , : , : |
153 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
154 | instantiation | 157, 155, 156 | ⊢ |
| : , : , : |
155 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
156 | instantiation | 157, 158, 159 | ⊢ |
| : , : , : |
157 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
158 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
159 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |