| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | ⊢  |
| | : , : , : , : , : , :  |
| 1 | reference | 52 | ⊢  |
| 2 | reference | 115 | ⊢  |
| 3 | reference | 98 | ⊢  |
| 4 | reference | 48 | ⊢  |
| 5 | reference | 117 | ⊢  |
| 6 | instantiation | 108 | ⊢  |
| | : , :  |
| 7 | instantiation | 12 | ⊢  |
| | : , : , : , : , :  |
| 8 | instantiation | 134, 128, 13 | ⊢  |
| | : , : , :  |
| 9 | reference | 126 | ⊢  |
| 10 | reference | 30 | ⊢  |
| 11 | instantiation | 83, 14, 15 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 13 | instantiation | 134, 130, 16 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 95, 17 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 52, 115, 98, 49, 117, 18, 19, 30, 126, 20* | ⊢  |
| | : , : , : , : , : , :  |
| 16 | instantiation | 134, 132, 21 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_1 |
| 18 | instantiation | 108 | ⊢  |
| | : , :  |
| 19 | instantiation | 22 | ⊢  |
| | : , : , : , :  |
| 20 | instantiation | 83, 23, 24 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 134, 135, 26 | ⊢  |
| | : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 23 | instantiation | 95, 25 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 52, 115, 98, 26, 117, 27, 28, 29, 30, 126, 31* | ⊢  |
| | : , : , : , : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 27 | instantiation | 108 | ⊢  |
| | : , :  |
| 28 | instantiation | 32 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 134, 128, 33 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 134, 128, 34 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 83, 35, 36 | ⊢  |
| | : , : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 33 | instantiation | 134, 130, 37 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 134, 130, 38 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 95, 39 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 52, 115, 98, 117, 40, 99, 41, 126, 42* | ⊢  |
| | : , : , : , : , : , :  |
| 37 | instantiation | 134, 132, 43 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 134, 132, 44 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_4 |
| 40 | instantiation | 108 | ⊢  |
| | : , :  |
| 41 | instantiation | 134, 128, 45 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 83, 46, 47 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 134, 135, 48 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 134, 135, 49 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 134, 130, 50 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 95, 51 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 52, 115, 98, 136, 117, 53, 54, 126, 55* | ⊢  |
| | : , : , : , : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 49 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 50 | instantiation | 134, 132, 56 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_1 |
| 52 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 53 | instantiation | 108 | ⊢  |
| | : , :  |
| 54 | instantiation | 134, 128, 57 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 83, 58, 59 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 134, 135, 116 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 134, 130, 60 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 95, 61 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 66, 136, 115, 92, 62, 63*, 64* | ⊢  |
| | : , : , : , :  |
| 60 | instantiation | 134, 132, 65 | ⊢  |
| | : , : , :  |
| 61 | instantiation | 66, 136, 115, 92, 93, 67, 68*, 69* | ⊢  |
| | : , : , : , :  |
| 62 | instantiation | 70, 129, 71, 72, 73, 111*, 74* | ⊢  |
| | : , : , :  |
| 63 | instantiation | 97, 98, 115, 99, 81, 117, 82 | ⊢  |
| | : , : , : , : , : , : , :  |
| 64 | instantiation | 83, 75, 76 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 134, 77, 78 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 67 | instantiation | 87, 79 | ⊢  |
| | :  |
| 68 | instantiation | 97, 98, 115, 80, 81, 117, 82 | ⊢  |
| | : , : , : , : , : , : , :  |
| 69 | instantiation | 83, 84, 85 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 72 | instantiation | 134, 130, 86 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 87, 88 | ⊢  |
| | :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_8_1 |
| 75 | instantiation | 95, 89 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 97, 98, 115, 90, 100, 117, 101 | ⊢  |
| | : , : , : , : , : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 78 | instantiation | 91, 136, 92, 93, 94 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 80 | instantiation | 108 | ⊢  |
| | : , :  |
| 81 | instantiation | 109, 115 | ⊢  |
| | : , :  |
| 82 | instantiation | 110, 111 | ⊢  |
| | : , : , :  |
| 83 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 84 | instantiation | 95, 96 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 97, 98, 115, 99, 100, 117, 101 | ⊢  |
| | : , : , : , : , : , : , :  |
| 86 | instantiation | 134, 132, 102 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 88 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat8 |
| 89 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 90 | instantiation | 108 | ⊢  |
| | : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 92 | instantiation | 104, 103, 106 | ⊢  |
| | : , : , :  |
| 93 | instantiation | 104, 105, 106 | ⊢  |
| | : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 95 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 96 | instantiation | 107, 126 | ⊢  |
| | :  |
| 97 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 99 | instantiation | 108 | ⊢  |
| | : , :  |
| 100 | instantiation | 109, 115 | ⊢  |
| | : , :  |
| 101 | instantiation | 110, 111 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 134, 135, 112 | ⊢  |
| | : , : , :  |
| 103 | instantiation | 114, 136, 112, 113 | ⊢  |
| | : , : , : , : , :  |
| 104 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 105 | instantiation | 114, 115, 116, 117, 118 | ⊢  |
| | : , : , : , : , :  |
| 106 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 107 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 108 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 109 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 110 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 111 | instantiation | 119, 120, 121 | ⊢  |
| | : , : , :  |
| 112 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 113 | instantiation | 122 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 114 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 115 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 116 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 117 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 118 | instantiation | 123 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 119 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 120 | instantiation | 124, 126 | ⊢  |
| | :  |
| 121 | instantiation | 125, 126, 127 | ⊢  |
| | : , :  |
| 122 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 123 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 124 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 125 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 126 | instantiation | 134, 128, 129 | ⊢  |
| | : , : , :  |
| 127 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 128 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 129 | instantiation | 134, 130, 131 | ⊢  |
| | : , : , :  |
| 130 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 131 | instantiation | 134, 132, 133 | ⊢  |
| | : , : , :  |
| 132 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 133 | instantiation | 134, 135, 136 | ⊢  |
| | : , : , :  |
| 134 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 135 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 136 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |