| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10* | ⊢ |
| : , : , : , : , : , : |
1 | reference | 41 | ⊢ |
2 | reference | 104 | ⊢ |
3 | reference | 87 | ⊢ |
4 | reference | 38 | ⊢ |
5 | reference | 106 | ⊢ |
6 | instantiation | 97 | ⊢ |
| : , : |
7 | instantiation | 11 | ⊢ |
| : , : , : , : |
8 | reference | 19 | ⊢ |
9 | reference | 115 | ⊢ |
10 | instantiation | 72, 12, 13 | ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
12 | instantiation | 84, 14 | ⊢ |
| : , : , : |
13 | instantiation | 41, 104, 87, 15, 106, 16, 17, 18, 19, 115, 20* | ⊢ |
| : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
16 | instantiation | 97 | ⊢ |
| : , : |
17 | instantiation | 21 | ⊢ |
| : , : , : |
18 | instantiation | 123, 117, 22 | ⊢ |
| : , : , : |
19 | instantiation | 123, 117, 23 | ⊢ |
| : , : , : |
20 | instantiation | 72, 24, 25 | ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
22 | instantiation | 123, 119, 26 | ⊢ |
| : , : , : |
23 | instantiation | 123, 119, 27 | ⊢ |
| : , : , : |
24 | instantiation | 84, 28 | ⊢ |
| : , : , : |
25 | instantiation | 41, 104, 87, 106, 29, 88, 30, 115, 31* | ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 123, 121, 32 | ⊢ |
| : , : , : |
27 | instantiation | 123, 121, 33 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
29 | instantiation | 97 | ⊢ |
| : , : |
30 | instantiation | 123, 117, 34 | ⊢ |
| : , : , : |
31 | instantiation | 72, 35, 36 | ⊢ |
| : , : , : |
32 | instantiation | 123, 124, 37 | ⊢ |
| : , : , : |
33 | instantiation | 123, 124, 38 | ⊢ |
| : , : , : |
34 | instantiation | 123, 119, 39 | ⊢ |
| : , : , : |
35 | instantiation | 84, 40 | ⊢ |
| : , : , : |
36 | instantiation | 41, 104, 87, 125, 106, 42, 43, 115, 44* | ⊢ |
| : , : , : , : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
39 | instantiation | 123, 121, 45 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
41 | theorem | | ⊢ |
| proveit.numbers.addition.association |
42 | instantiation | 97 | ⊢ |
| : , : |
43 | instantiation | 123, 117, 46 | ⊢ |
| : , : , : |
44 | instantiation | 72, 47, 48 | ⊢ |
| : , : , : |
45 | instantiation | 123, 124, 105 | ⊢ |
| : , : , : |
46 | instantiation | 123, 119, 49 | ⊢ |
| : , : , : |
47 | instantiation | 84, 50 | ⊢ |
| : , : , : |
48 | instantiation | 55, 125, 104, 81, 51, 52*, 53* | ⊢ |
| : , : , : , : |
49 | instantiation | 123, 121, 54 | ⊢ |
| : , : , : |
50 | instantiation | 55, 125, 104, 81, 82, 56, 57*, 58* | ⊢ |
| : , : , : , : |
51 | instantiation | 59, 118, 60, 61, 62, 100*, 63* | ⊢ |
| : , : , : |
52 | instantiation | 86, 87, 104, 88, 70, 106, 71 | ⊢ |
| : , : , : , : , : , : , : |
53 | instantiation | 72, 64, 65 | ⊢ |
| : , : , : |
54 | instantiation | 123, 66, 67 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
56 | instantiation | 76, 68 | ⊢ |
| : |
57 | instantiation | 86, 87, 104, 69, 70, 106, 71 | ⊢ |
| : , : , : , : , : , : , : |
58 | instantiation | 72, 73, 74 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
61 | instantiation | 123, 119, 75 | ⊢ |
| : , : , : |
62 | instantiation | 76, 77 | ⊢ |
| : |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
64 | instantiation | 84, 78 | ⊢ |
| : , : , : |
65 | instantiation | 86, 87, 104, 79, 89, 106, 90 | ⊢ |
| : , : , : , : , : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
67 | instantiation | 80, 125, 81, 82, 83 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
69 | instantiation | 97 | ⊢ |
| : , : |
70 | instantiation | 98, 104 | ⊢ |
| : , : |
71 | instantiation | 99, 100 | ⊢ |
| : , : , : |
72 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
73 | instantiation | 84, 85 | ⊢ |
| : , : , : |
74 | instantiation | 86, 87, 104, 88, 89, 106, 90 | ⊢ |
| : , : , : , : , : , : , : |
75 | instantiation | 123, 121, 91 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
79 | instantiation | 97 | ⊢ |
| : , : |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
81 | instantiation | 93, 92, 95 | ⊢ |
| : , : , : |
82 | instantiation | 93, 94, 95 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
84 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
85 | instantiation | 96, 115 | ⊢ |
| : |
86 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
88 | instantiation | 97 | ⊢ |
| : , : |
89 | instantiation | 98, 104 | ⊢ |
| : , : |
90 | instantiation | 99, 100 | ⊢ |
| : , : , : |
91 | instantiation | 123, 124, 101 | ⊢ |
| : , : , : |
92 | instantiation | 103, 125, 101, 102 | ⊢ |
| : , : , : , : , : |
93 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
94 | instantiation | 103, 104, 105, 106, 107 | ⊢ |
| : , : , : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
96 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
98 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
99 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
100 | instantiation | 108, 109, 110 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
102 | instantiation | 111 | ⊢ |
| : , : , : , : , : , : , : , : |
103 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
104 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
106 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
107 | instantiation | 112 | ⊢ |
| : , : , : , : , : , : , : , : , : |
108 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
109 | instantiation | 113, 115 | ⊢ |
| : |
110 | instantiation | 114, 115, 116 | ⊢ |
| : , : |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
112 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
113 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
114 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
115 | instantiation | 123, 117, 118 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
118 | instantiation | 123, 119, 120 | ⊢ |
| : , : , : |
119 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
120 | instantiation | 123, 121, 122 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
122 | instantiation | 123, 124, 125 | ⊢ |
| : , : , : |
123 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
125 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |