| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 80 | ⊢  |
| 2 | instantiation | 92, 4 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 49, 112, 95, 45, 114, 5, 6, 7, 123, 27, 8* | ⊢  |
| | : , : , : , : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 5 | instantiation | 105 | ⊢  |
| | : , :  |
| 6 | instantiation | 9 | ⊢  |
| | : , : , : , : , :  |
| 7 | instantiation | 131, 125, 10 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 80, 11, 12 | ⊢  |
| | : , : , :  |
| 9 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 10 | instantiation | 131, 127, 13 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 92, 14 | ⊢  |
| | : , : , :  |
| 12 | instantiation | 49, 112, 95, 46, 114, 15, 16, 27, 123, 17* | ⊢  |
| | : , : , : , : , : , :  |
| 13 | instantiation | 131, 129, 18 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_1 |
| 15 | instantiation | 105 | ⊢  |
| | : , :  |
| 16 | instantiation | 19 | ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 80, 20, 21 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 131, 132, 23 | ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 20 | instantiation | 92, 22 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 49, 112, 95, 23, 114, 24, 25, 26, 27, 123, 28* | ⊢  |
| | : , : , : , : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 24 | instantiation | 105 | ⊢  |
| | : , :  |
| 25 | instantiation | 29 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 131, 125, 30 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 131, 125, 31 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 80, 32, 33 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 30 | instantiation | 131, 127, 34 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 131, 127, 35 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 92, 36 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 49, 112, 95, 114, 37, 96, 38, 123, 39* | ⊢  |
| | : , : , : , : , : , :  |
| 34 | instantiation | 131, 129, 40 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 131, 129, 41 | ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_4 |
| 37 | instantiation | 105 | ⊢  |
| | : , :  |
| 38 | instantiation | 131, 125, 42 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 80, 43, 44 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 131, 132, 45 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 131, 132, 46 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 131, 127, 47 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 92, 48 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 49, 112, 95, 133, 114, 50, 51, 123, 52* | ⊢  |
| | : , : , : , : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 47 | instantiation | 131, 129, 53 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_1 |
| 49 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 50 | instantiation | 105 | ⊢  |
| | : , :  |
| 51 | instantiation | 131, 125, 54 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 80, 55, 56 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 131, 132, 113 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 131, 127, 57 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 92, 58 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 63, 133, 112, 89, 59, 60*, 61* | ⊢  |
| | : , : , : , :  |
| 57 | instantiation | 131, 129, 62 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 63, 133, 112, 89, 90, 64, 65*, 66* | ⊢  |
| | : , : , : , :  |
| 59 | instantiation | 67, 126, 68, 69, 70, 108*, 71* | ⊢  |
| | : , : , :  |
| 60 | instantiation | 94, 95, 112, 96, 78, 114, 79 | ⊢  |
| | : , : , : , : , : , : , :  |
| 61 | instantiation | 80, 72, 73 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 131, 74, 75 | ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 64 | instantiation | 84, 76 | ⊢  |
| | :  |
| 65 | instantiation | 94, 95, 112, 77, 78, 114, 79 | ⊢  |
| | : , : , : , : , : , : , :  |
| 66 | instantiation | 80, 81, 82 | ⊢  |
| | : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 69 | instantiation | 131, 127, 83 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 84, 85 | ⊢  |
| | :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_8_1 |
| 72 | instantiation | 92, 86 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 94, 95, 112, 87, 97, 114, 98 | ⊢  |
| | : , : , : , : , : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 75 | instantiation | 88, 133, 89, 90, 91 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 77 | instantiation | 105 | ⊢  |
| | : , :  |
| 78 | instantiation | 106, 112 | ⊢  |
| | : , :  |
| 79 | instantiation | 107, 108 | ⊢  |
| | : , : , :  |
| 80 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 81 | instantiation | 92, 93 | ⊢  |
| | : , : , :  |
| 82 | instantiation | 94, 95, 112, 96, 97, 114, 98 | ⊢  |
| | : , : , : , : , : , : , :  |
| 83 | instantiation | 131, 129, 99 | ⊢  |
| | : , : , :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat8 |
| 86 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 87 | instantiation | 105 | ⊢  |
| | : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 89 | instantiation | 101, 100, 103 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 101, 102, 103 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 92 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 93 | instantiation | 104, 123 | ⊢  |
| | :  |
| 94 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 95 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 96 | instantiation | 105 | ⊢  |
| | : , :  |
| 97 | instantiation | 106, 112 | ⊢  |
| | : , :  |
| 98 | instantiation | 107, 108 | ⊢  |
| | : , : , :  |
| 99 | instantiation | 131, 132, 109 | ⊢  |
| | : , : , :  |
| 100 | instantiation | 111, 133, 109, 110 | ⊢  |
| | : , : , : , : , :  |
| 101 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 102 | instantiation | 111, 112, 113, 114, 115 | ⊢  |
| | : , : , : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 104 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 105 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 106 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 107 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 108 | instantiation | 116, 117, 118 | ⊢  |
| | : , : , :  |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 110 | instantiation | 119 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 111 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 112 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 113 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 114 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 115 | instantiation | 120 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 116 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 117 | instantiation | 121, 123 | ⊢  |
| | :  |
| 118 | instantiation | 122, 123, 124 | ⊢  |
| | : , :  |
| 119 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 120 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 121 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 122 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 123 | instantiation | 131, 125, 126 | ⊢  |
| | : , : , :  |
| 124 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 125 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 126 | instantiation | 131, 127, 128 | ⊢  |
| | : , : , :  |
| 127 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 128 | instantiation | 131, 129, 130 | ⊢  |
| | : , : , :  |
| 129 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 130 | instantiation | 131, 132, 133 | ⊢  |
| | : , : , :  |
| 131 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 132 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 133 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |