| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9* | ⊢ |
| : , : , : , : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.addition.association |
2 | reference | 68 | ⊢ |
3 | reference | 51 | ⊢ |
4 | reference | 89 | ⊢ |
5 | reference | 70 | ⊢ |
6 | instantiation | 61 | ⊢ |
| : , : |
7 | instantiation | 87, 81, 10 | ⊢ |
| : , : , : |
8 | reference | 79 | ⊢ |
9 | instantiation | 36, 11, 12 | ⊢ |
| : , : , : |
10 | instantiation | 87, 83, 13 | ⊢ |
| : , : , : |
11 | instantiation | 48, 14 | ⊢ |
| : , : , : |
12 | instantiation | 19, 89, 68, 45, 15, 16*, 17* | ⊢ |
| : , : , : , : |
13 | instantiation | 87, 85, 18 | ⊢ |
| : , : , : |
14 | instantiation | 19, 89, 68, 45, 46, 20, 21*, 22* | ⊢ |
| : , : , : , : |
15 | instantiation | 23, 82, 24, 25, 26, 64*, 27* | ⊢ |
| : , : , : |
16 | instantiation | 50, 51, 68, 52, 34, 70, 35 | ⊢ |
| : , : , : , : , : , : , : |
17 | instantiation | 36, 28, 29 | ⊢ |
| : , : , : |
18 | instantiation | 87, 30, 31 | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
20 | instantiation | 40, 32 | ⊢ |
| : |
21 | instantiation | 50, 51, 68, 33, 34, 70, 35 | ⊢ |
| : , : , : , : , : , : , : |
22 | instantiation | 36, 37, 38 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
24 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
25 | instantiation | 87, 83, 39 | ⊢ |
| : , : , : |
26 | instantiation | 40, 41 | ⊢ |
| : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
28 | instantiation | 48, 42 | ⊢ |
| : , : , : |
29 | instantiation | 50, 51, 68, 43, 53, 70, 54 | ⊢ |
| : , : , : , : , : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
31 | instantiation | 44, 89, 45, 46, 47 | ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
33 | instantiation | 61 | ⊢ |
| : , : |
34 | instantiation | 62, 68 | ⊢ |
| : , : |
35 | instantiation | 63, 64 | ⊢ |
| : , : , : |
36 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
37 | instantiation | 48, 49 | ⊢ |
| : , : , : |
38 | instantiation | 50, 51, 68, 52, 53, 70, 54 | ⊢ |
| : , : , : , : , : , : , : |
39 | instantiation | 87, 85, 55 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
43 | instantiation | 61 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
45 | instantiation | 57, 56, 59 | ⊢ |
| : , : , : |
46 | instantiation | 57, 58, 59 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
48 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
49 | instantiation | 60, 79 | ⊢ |
| : |
50 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
52 | instantiation | 61 | ⊢ |
| : , : |
53 | instantiation | 62, 68 | ⊢ |
| : , : |
54 | instantiation | 63, 64 | ⊢ |
| : , : , : |
55 | instantiation | 87, 88, 65 | ⊢ |
| : , : , : |
56 | instantiation | 67, 89, 65, 66 | ⊢ |
| : , : , : , : , : |
57 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
58 | instantiation | 67, 68, 69, 70, 71 | ⊢ |
| : , : , : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
60 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
62 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
63 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
64 | instantiation | 72, 73, 74 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
66 | instantiation | 75 | ⊢ |
| : , : , : , : , : , : , : , : |
67 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
68 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
70 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
71 | instantiation | 76 | ⊢ |
| : , : , : , : , : , : , : , : , : |
72 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
73 | instantiation | 77, 79 | ⊢ |
| : |
74 | instantiation | 78, 79, 80 | ⊢ |
| : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
77 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
78 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
79 | instantiation | 87, 81, 82 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
82 | instantiation | 87, 83, 84 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
84 | instantiation | 87, 85, 86 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
86 | instantiation | 87, 88, 89 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
89 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |