| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 2 | reference | 58 | ⊢  |
| 3 | reference | 39 | ⊢  |
| 4 | instantiation | 8, 9, 10 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 11, 51, 12, 13, 14, 41*, 15* | ⊢  |
| | : , : , :  |
| 6 | instantiation | 29, 30, 39, 16, 17, 33, 18 | ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | instantiation | 19, 20, 21 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 9 | instantiation | 22, 58, 42, 23 | ⊢  |
| | : , : , : , : , :  |
| 10 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 11 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 12 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 13 | instantiation | 56, 52, 24 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 25, 26 | ⊢  |
| | :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_8_1 |
| 16 | instantiation | 37 | ⊢  |
| | : , :  |
| 17 | instantiation | 38, 39 | ⊢  |
| | : , :  |
| 18 | instantiation | 40, 41 | ⊢  |
| | : , : , :  |
| 19 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 20 | instantiation | 27, 28 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 29, 30, 39, 31, 32, 33, 34 | ⊢  |
| | : , : , : , : , : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 23 | instantiation | 35 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 24 | instantiation | 56, 54, 36 | ⊢  |
| | : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat8 |
| 27 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 29 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 31 | instantiation | 37 | ⊢  |
| | : , :  |
| 32 | instantiation | 38, 39 | ⊢  |
| | : , :  |
| 33 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 34 | instantiation | 40, 41 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 36 | instantiation | 56, 57, 42 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 38 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 39 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 40 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 41 | instantiation | 43, 44, 45 | ⊢  |
| | : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 43 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 44 | instantiation | 46, 48 | ⊢  |
| | :  |
| 45 | instantiation | 47, 48, 49 | ⊢  |
| | : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 47 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 48 | instantiation | 56, 50, 51 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 51 | instantiation | 56, 52, 53 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 53 | instantiation | 56, 54, 55 | ⊢  |
| | : , : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 55 | instantiation | 56, 57, 58 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |