| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
2 | reference | 58 | ⊢ |
3 | reference | 39 | ⊢ |
4 | instantiation | 8, 9, 10 | ⊢ |
| : , : , : |
5 | instantiation | 11, 51, 12, 13, 14, 41*, 15* | ⊢ |
| : , : , : |
6 | instantiation | 29, 30, 39, 16, 17, 33, 18 | ⊢ |
| : , : , : , : , : , : , : |
7 | instantiation | 19, 20, 21 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
9 | instantiation | 22, 58, 42, 23 | ⊢ |
| : , : , : , : , : |
10 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
11 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
12 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
13 | instantiation | 56, 52, 24 | ⊢ |
| : , : , : |
14 | instantiation | 25, 26 | ⊢ |
| : |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
16 | instantiation | 37 | ⊢ |
| : , : |
17 | instantiation | 38, 39 | ⊢ |
| : , : |
18 | instantiation | 40, 41 | ⊢ |
| : , : , : |
19 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
20 | instantiation | 27, 28 | ⊢ |
| : , : , : |
21 | instantiation | 29, 30, 39, 31, 32, 33, 34 | ⊢ |
| : , : , : , : , : , : , : |
22 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
23 | instantiation | 35 | ⊢ |
| : , : , : , : , : , : , : , : |
24 | instantiation | 56, 54, 36 | ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
27 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
29 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
31 | instantiation | 37 | ⊢ |
| : , : |
32 | instantiation | 38, 39 | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
34 | instantiation | 40, 41 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
36 | instantiation | 56, 57, 42 | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
38 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
39 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
40 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
41 | instantiation | 43, 44, 45 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
43 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
44 | instantiation | 46, 48 | ⊢ |
| : |
45 | instantiation | 47, 48, 49 | ⊢ |
| : , : |
46 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
47 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
48 | instantiation | 56, 50, 51 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
51 | instantiation | 56, 52, 53 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
53 | instantiation | 56, 54, 55 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
55 | instantiation | 56, 57, 58 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |