logo

Expression of type Equals

from the theory of proveit.numbers.numerals.decimals

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.logic import Equals
from proveit.numbers import Add, DecimalSequence, nine, one, zero
In [2]:
# build up the expression from sub-expressions
expr = Equals(Add(Add(nine, one), one, one), Add(DecimalSequence(one, zero), one, one))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(9 + 1\right) + 1 + 1\right) = \left(10 + 1 + 1\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 9
operands: 5
4Operationoperator: 9
operands: 6
5ExprTuple7, 14, 14
6ExprTuple8, 14, 14
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 14
11Literal
12ExprTuple14, 15
13Literal
14Literal
15Literal