| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 35 | ⊢ |
2 | instantiation | 47, 4 | ⊢ |
| : , : , : |
3 | instantiation | 5, 67, 50, 88, 69, 6, 7, 78, 8* | ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
5 | theorem | | ⊢ |
| proveit.numbers.addition.association |
6 | instantiation | 60 | ⊢ |
| : , : |
7 | instantiation | 86, 80, 9 | ⊢ |
| : , : , : |
8 | instantiation | 35, 10, 11 | ⊢ |
| : , : , : |
9 | instantiation | 86, 82, 12 | ⊢ |
| : , : , : |
10 | instantiation | 47, 13 | ⊢ |
| : , : , : |
11 | instantiation | 18, 88, 67, 44, 14, 15*, 16* | ⊢ |
| : , : , : , : |
12 | instantiation | 86, 84, 17 | ⊢ |
| : , : , : |
13 | instantiation | 18, 88, 67, 44, 45, 19, 20*, 21* | ⊢ |
| : , : , : , : |
14 | instantiation | 22, 81, 23, 24, 25, 63*, 26* | ⊢ |
| : , : , : |
15 | instantiation | 49, 50, 67, 51, 33, 69, 34 | ⊢ |
| : , : , : , : , : , : , : |
16 | instantiation | 35, 27, 28 | ⊢ |
| : , : , : |
17 | instantiation | 86, 29, 30 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
19 | instantiation | 39, 31 | ⊢ |
| : |
20 | instantiation | 49, 50, 67, 32, 33, 69, 34 | ⊢ |
| : , : , : , : , : , : , : |
21 | instantiation | 35, 36, 37 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
23 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
24 | instantiation | 86, 82, 38 | ⊢ |
| : , : , : |
25 | instantiation | 39, 40 | ⊢ |
| : |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
27 | instantiation | 47, 41 | ⊢ |
| : , : , : |
28 | instantiation | 49, 50, 67, 42, 52, 69, 53 | ⊢ |
| : , : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
30 | instantiation | 43, 88, 44, 45, 46 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
32 | instantiation | 60 | ⊢ |
| : , : |
33 | instantiation | 61, 67 | ⊢ |
| : , : |
34 | instantiation | 62, 63 | ⊢ |
| : , : , : |
35 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
36 | instantiation | 47, 48 | ⊢ |
| : , : , : |
37 | instantiation | 49, 50, 67, 51, 52, 69, 53 | ⊢ |
| : , : , : , : , : , : , : |
38 | instantiation | 86, 84, 54 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
42 | instantiation | 60 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
44 | instantiation | 56, 55, 58 | ⊢ |
| : , : , : |
45 | instantiation | 56, 57, 58 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
47 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
48 | instantiation | 59, 78 | ⊢ |
| : |
49 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
51 | instantiation | 60 | ⊢ |
| : , : |
52 | instantiation | 61, 67 | ⊢ |
| : , : |
53 | instantiation | 62, 63 | ⊢ |
| : , : , : |
54 | instantiation | 86, 87, 64 | ⊢ |
| : , : , : |
55 | instantiation | 66, 88, 64, 65 | ⊢ |
| : , : , : , : , : |
56 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
57 | instantiation | 66, 67, 68, 69, 70 | ⊢ |
| : , : , : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
59 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
61 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
62 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
63 | instantiation | 71, 72, 73 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
65 | instantiation | 74 | ⊢ |
| : , : , : , : , : , : , : , : |
66 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
67 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
69 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
70 | instantiation | 75 | ⊢ |
| : , : , : , : , : , : , : , : , : |
71 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
72 | instantiation | 76, 78 | ⊢ |
| : |
73 | instantiation | 77, 78, 79 | ⊢ |
| : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
76 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
77 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
78 | instantiation | 86, 80, 81 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
81 | instantiation | 86, 82, 83 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
83 | instantiation | 86, 84, 85 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
85 | instantiation | 86, 87, 88 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
88 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |