| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 62 | ⊢ |
2 | instantiation | 74, 4 | ⊢ |
| : , : , : |
3 | instantiation | 31, 94, 77, 5, 96, 6, 7, 8, 9, 105, 10* | ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
5 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
6 | instantiation | 87 | ⊢ |
| : , : |
7 | instantiation | 11 | ⊢ |
| : , : , : |
8 | instantiation | 113, 107, 12 | ⊢ |
| : , : , : |
9 | instantiation | 113, 107, 13 | ⊢ |
| : , : , : |
10 | instantiation | 62, 14, 15 | ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
12 | instantiation | 113, 109, 16 | ⊢ |
| : , : , : |
13 | instantiation | 113, 109, 17 | ⊢ |
| : , : , : |
14 | instantiation | 74, 18 | ⊢ |
| : , : , : |
15 | instantiation | 31, 94, 77, 96, 19, 78, 20, 105, 21* | ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 113, 111, 22 | ⊢ |
| : , : , : |
17 | instantiation | 113, 111, 23 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
19 | instantiation | 87 | ⊢ |
| : , : |
20 | instantiation | 113, 107, 24 | ⊢ |
| : , : , : |
21 | instantiation | 62, 25, 26 | ⊢ |
| : , : , : |
22 | instantiation | 113, 114, 27 | ⊢ |
| : , : , : |
23 | instantiation | 113, 114, 28 | ⊢ |
| : , : , : |
24 | instantiation | 113, 109, 29 | ⊢ |
| : , : , : |
25 | instantiation | 74, 30 | ⊢ |
| : , : , : |
26 | instantiation | 31, 94, 77, 115, 96, 32, 33, 105, 34* | ⊢ |
| : , : , : , : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
29 | instantiation | 113, 111, 35 | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
31 | theorem | | ⊢ |
| proveit.numbers.addition.association |
32 | instantiation | 87 | ⊢ |
| : , : |
33 | instantiation | 113, 107, 36 | ⊢ |
| : , : , : |
34 | instantiation | 62, 37, 38 | ⊢ |
| : , : , : |
35 | instantiation | 113, 114, 95 | ⊢ |
| : , : , : |
36 | instantiation | 113, 109, 39 | ⊢ |
| : , : , : |
37 | instantiation | 74, 40 | ⊢ |
| : , : , : |
38 | instantiation | 45, 115, 94, 71, 41, 42*, 43* | ⊢ |
| : , : , : , : |
39 | instantiation | 113, 111, 44 | ⊢ |
| : , : , : |
40 | instantiation | 45, 115, 94, 71, 72, 46, 47*, 48* | ⊢ |
| : , : , : , : |
41 | instantiation | 49, 108, 50, 51, 52, 90*, 53* | ⊢ |
| : , : , : |
42 | instantiation | 76, 77, 94, 78, 60, 96, 61 | ⊢ |
| : , : , : , : , : , : , : |
43 | instantiation | 62, 54, 55 | ⊢ |
| : , : , : |
44 | instantiation | 113, 56, 57 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
46 | instantiation | 66, 58 | ⊢ |
| : |
47 | instantiation | 76, 77, 94, 59, 60, 96, 61 | ⊢ |
| : , : , : , : , : , : , : |
48 | instantiation | 62, 63, 64 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
51 | instantiation | 113, 109, 65 | ⊢ |
| : , : , : |
52 | instantiation | 66, 67 | ⊢ |
| : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
54 | instantiation | 74, 68 | ⊢ |
| : , : , : |
55 | instantiation | 76, 77, 94, 69, 79, 96, 80 | ⊢ |
| : , : , : , : , : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
57 | instantiation | 70, 115, 71, 72, 73 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
59 | instantiation | 87 | ⊢ |
| : , : |
60 | instantiation | 88, 94 | ⊢ |
| : , : |
61 | instantiation | 89, 90 | ⊢ |
| : , : , : |
62 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
63 | instantiation | 74, 75 | ⊢ |
| : , : , : |
64 | instantiation | 76, 77, 94, 78, 79, 96, 80 | ⊢ |
| : , : , : , : , : , : , : |
65 | instantiation | 113, 111, 81 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
69 | instantiation | 87 | ⊢ |
| : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
71 | instantiation | 83, 82, 85 | ⊢ |
| : , : , : |
72 | instantiation | 83, 84, 85 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
74 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
75 | instantiation | 86, 105 | ⊢ |
| : |
76 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
78 | instantiation | 87 | ⊢ |
| : , : |
79 | instantiation | 88, 94 | ⊢ |
| : , : |
80 | instantiation | 89, 90 | ⊢ |
| : , : , : |
81 | instantiation | 113, 114, 91 | ⊢ |
| : , : , : |
82 | instantiation | 93, 115, 91, 92 | ⊢ |
| : , : , : , : , : |
83 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
84 | instantiation | 93, 94, 95, 96, 97 | ⊢ |
| : , : , : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
86 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
88 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
89 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
90 | instantiation | 98, 99, 100 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
92 | instantiation | 101 | ⊢ |
| : , : , : , : , : , : , : , : |
93 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
94 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
96 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
97 | instantiation | 102 | ⊢ |
| : , : , : , : , : , : , : , : , : |
98 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
99 | instantiation | 103, 105 | ⊢ |
| : |
100 | instantiation | 104, 105, 106 | ⊢ |
| : , : |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
103 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
104 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
105 | instantiation | 113, 107, 108 | ⊢ |
| : , : , : |
106 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
108 | instantiation | 113, 109, 110 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
110 | instantiation | 113, 111, 112 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
112 | instantiation | 113, 114, 115 | ⊢ |
| : , : , : |
113 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
114 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
115 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |