| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 62 | ⊢  |
| 2 | instantiation | 74, 4 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 31, 94, 77, 5, 96, 6, 7, 8, 9, 105, 10* | ⊢  |
| | : , : , : , : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 5 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 6 | instantiation | 87 | ⊢  |
| | : , :  |
| 7 | instantiation | 11 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 113, 107, 12 | ⊢  |
| | : , : , :  |
| 9 | instantiation | 113, 107, 13 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 62, 14, 15 | ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 12 | instantiation | 113, 109, 16 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 113, 109, 17 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 74, 18 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 31, 94, 77, 96, 19, 78, 20, 105, 21* | ⊢  |
| | : , : , : , : , : , :  |
| 16 | instantiation | 113, 111, 22 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 113, 111, 23 | ⊢  |
| | : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_4 |
| 19 | instantiation | 87 | ⊢  |
| | : , :  |
| 20 | instantiation | 113, 107, 24 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 62, 25, 26 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 113, 114, 27 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 113, 114, 28 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 113, 109, 29 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 74, 30 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 31, 94, 77, 115, 96, 32, 33, 105, 34* | ⊢  |
| | : , : , : , : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 29 | instantiation | 113, 111, 35 | ⊢  |
| | : , : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_1 |
| 31 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 32 | instantiation | 87 | ⊢  |
| | : , :  |
| 33 | instantiation | 113, 107, 36 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 62, 37, 38 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 113, 114, 95 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 113, 109, 39 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 74, 40 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 45, 115, 94, 71, 41, 42*, 43* | ⊢  |
| | : , : , : , :  |
| 39 | instantiation | 113, 111, 44 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 45, 115, 94, 71, 72, 46, 47*, 48* | ⊢  |
| | : , : , : , :  |
| 41 | instantiation | 49, 108, 50, 51, 52, 90*, 53* | ⊢  |
| | : , : , :  |
| 42 | instantiation | 76, 77, 94, 78, 60, 96, 61 | ⊢  |
| | : , : , : , : , : , : , :  |
| 43 | instantiation | 62, 54, 55 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 113, 56, 57 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 46 | instantiation | 66, 58 | ⊢  |
| | :  |
| 47 | instantiation | 76, 77, 94, 59, 60, 96, 61 | ⊢  |
| | : , : , : , : , : , : , :  |
| 48 | instantiation | 62, 63, 64 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 51 | instantiation | 113, 109, 65 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 66, 67 | ⊢  |
| | :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_8_1 |
| 54 | instantiation | 74, 68 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 76, 77, 94, 69, 79, 96, 80 | ⊢  |
| | : , : , : , : , : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 57 | instantiation | 70, 115, 71, 72, 73 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 59 | instantiation | 87 | ⊢  |
| | : , :  |
| 60 | instantiation | 88, 94 | ⊢  |
| | : , :  |
| 61 | instantiation | 89, 90 | ⊢  |
| | : , : , :  |
| 62 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 63 | instantiation | 74, 75 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 76, 77, 94, 78, 79, 96, 80 | ⊢  |
| | : , : , : , : , : , : , :  |
| 65 | instantiation | 113, 111, 81 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat8 |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 69 | instantiation | 87 | ⊢  |
| | : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 71 | instantiation | 83, 82, 85 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 83, 84, 85 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 74 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 75 | instantiation | 86, 105 | ⊢  |
| | :  |
| 76 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 78 | instantiation | 87 | ⊢  |
| | : , :  |
| 79 | instantiation | 88, 94 | ⊢  |
| | : , :  |
| 80 | instantiation | 89, 90 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 113, 114, 91 | ⊢  |
| | : , : , :  |
| 82 | instantiation | 93, 115, 91, 92 | ⊢  |
| | : , : , : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 84 | instantiation | 93, 94, 95, 96, 97 | ⊢  |
| | : , : , : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 86 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 87 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 88 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 89 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 90 | instantiation | 98, 99, 100 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 92 | instantiation | 101 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 94 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 95 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 96 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 97 | instantiation | 102 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 99 | instantiation | 103, 105 | ⊢  |
| | :  |
| 100 | instantiation | 104, 105, 106 | ⊢  |
| | : , :  |
| 101 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 102 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 103 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 104 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 105 | instantiation | 113, 107, 108 | ⊢  |
| | : , : , :  |
| 106 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 108 | instantiation | 113, 109, 110 | ⊢  |
| | : , : , :  |
| 109 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 110 | instantiation | 113, 111, 112 | ⊢  |
| | : , : , :  |
| 111 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 112 | instantiation | 113, 114, 115 | ⊢  |
| | : , : , :  |
| 113 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 114 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 115 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |