| step type | requirements | statement |
0 | instantiation | 1, 2 | ⊢ |
| : , : , : |
1 | reference | 26 | ⊢ |
2 | instantiation | 3, 57, 39, 4, 5, 6, 7*, 8* | ⊢ |
| : , : , : , : |
3 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
4 | instantiation | 10, 9, 12 | ⊢ |
| : , : , : |
5 | instantiation | 10, 11, 12 | ⊢ |
| : , : , : |
6 | instantiation | 13, 14 | ⊢ |
| : |
7 | instantiation | 28, 29, 39, 15, 16, 32, 17 | ⊢ |
| : , : , : , : , : , : , : |
8 | instantiation | 18, 19, 20 | ⊢ |
| : , : , : |
9 | instantiation | 23, 57, 21, 22 | ⊢ |
| : , : , : , : , : |
10 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
11 | instantiation | 23, 39, 24, 32, 25 | ⊢ |
| : , : , : , : , : |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
13 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
15 | instantiation | 37 | ⊢ |
| : , : |
16 | instantiation | 38, 39 | ⊢ |
| : , : |
17 | instantiation | 40, 41 | ⊢ |
| : , : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
19 | instantiation | 26, 27 | ⊢ |
| : , : , : |
20 | instantiation | 28, 29, 39, 30, 31, 32, 33 | ⊢ |
| : , : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
22 | instantiation | 34 | ⊢ |
| : , : , : , : , : , : , : , : |
23 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
24 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
25 | instantiation | 35 | ⊢ |
| : , : , : , : , : , : , : , : , : |
26 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
27 | instantiation | 36, 47 | ⊢ |
| : |
28 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
30 | instantiation | 37 | ⊢ |
| : , : |
31 | instantiation | 38, 39 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
33 | instantiation | 40, 41 | ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
36 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
38 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
39 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
40 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
41 | instantiation | 42, 43, 44 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
43 | instantiation | 45, 47 | ⊢ |
| : |
44 | instantiation | 46, 47, 48 | ⊢ |
| : , : |
45 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
46 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
47 | instantiation | 55, 49, 50 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
49 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
50 | instantiation | 55, 51, 52 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
52 | instantiation | 55, 53, 54 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
54 | instantiation | 55, 56, 57 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |