| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | ⊢  |
| | : , : , : , : , : , :  |
| 1 | reference | 63 | ⊢  |
| 2 | reference | 126 | ⊢  |
| 3 | reference | 109 | ⊢  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 5 | reference | 128 | ⊢  |
| 6 | instantiation | 119 | ⊢  |
| | : , :  |
| 7 | instantiation | 12 | ⊢  |
| | : , : , : , : , : , :  |
| 8 | instantiation | 145, 139, 13 | ⊢  |
| | : , : , :  |
| 9 | reference | 137 | ⊢  |
| 10 | reference | 41 | ⊢  |
| 11 | instantiation | 94, 14, 15 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
| 13 | instantiation | 145, 141, 16 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 106, 17 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 63, 126, 109, 59, 128, 18, 19, 20, 137, 41, 21* | ⊢  |
| | : , : , : , : , : , :  |
| 16 | instantiation | 145, 143, 22 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 18 | instantiation | 119 | ⊢  |
| | : , :  |
| 19 | instantiation | 23 | ⊢  |
| | : , : , : , : , :  |
| 20 | instantiation | 145, 139, 24 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 94, 25, 26 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 145, 146, 109 | ⊢  |
| | : , : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 24 | instantiation | 145, 141, 27 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 106, 28 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 63, 126, 109, 60, 128, 29, 30, 41, 137, 31* | ⊢  |
| | : , : , : , : , : , :  |
| 27 | instantiation | 145, 143, 32 | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_1 |
| 29 | instantiation | 119 | ⊢  |
| | : , :  |
| 30 | instantiation | 33 | ⊢  |
| | : , : , : , :  |
| 31 | instantiation | 94, 34, 35 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 145, 146, 37 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 34 | instantiation | 106, 36 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 63, 126, 109, 37, 128, 38, 39, 40, 41, 137, 42* | ⊢  |
| | : , : , : , : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 38 | instantiation | 119 | ⊢  |
| | : , :  |
| 39 | instantiation | 43 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 145, 139, 44 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 145, 139, 45 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 94, 46, 47 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 44 | instantiation | 145, 141, 48 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 145, 141, 49 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 106, 50 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 63, 126, 109, 128, 51, 110, 52, 137, 53* | ⊢  |
| | : , : , : , : , : , :  |
| 48 | instantiation | 145, 143, 54 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 145, 143, 55 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_4 |
| 51 | instantiation | 119 | ⊢  |
| | : , :  |
| 52 | instantiation | 145, 139, 56 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 94, 57, 58 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 145, 146, 59 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 145, 146, 60 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 145, 141, 61 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 106, 62 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 63, 126, 109, 147, 128, 64, 65, 137, 66* | ⊢  |
| | : , : , : , : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 61 | instantiation | 145, 143, 67 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_1 |
| 63 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 64 | instantiation | 119 | ⊢  |
| | : , :  |
| 65 | instantiation | 145, 139, 68 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 94, 69, 70 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 145, 146, 127 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 145, 141, 71 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 106, 72 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 77, 147, 126, 103, 73, 74*, 75* | ⊢  |
| | : , : , : , :  |
| 71 | instantiation | 145, 143, 76 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 77, 147, 126, 103, 104, 78, 79*, 80* | ⊢  |
| | : , : , : , :  |
| 73 | instantiation | 81, 140, 82, 83, 84, 122*, 85* | ⊢  |
| | : , : , :  |
| 74 | instantiation | 108, 109, 126, 110, 92, 128, 93 | ⊢  |
| | : , : , : , : , : , : , :  |
| 75 | instantiation | 94, 86, 87 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 145, 88, 89 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 78 | instantiation | 98, 90 | ⊢  |
| | :  |
| 79 | instantiation | 108, 109, 126, 91, 92, 128, 93 | ⊢  |
| | : , : , : , : , : , : , :  |
| 80 | instantiation | 94, 95, 96 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 83 | instantiation | 145, 141, 97 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 98, 99 | ⊢  |
| | :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_8_1 |
| 86 | instantiation | 106, 100 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 108, 109, 126, 101, 111, 128, 112 | ⊢  |
| | : , : , : , : , : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 89 | instantiation | 102, 147, 103, 104, 105 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 91 | instantiation | 119 | ⊢  |
| | : , :  |
| 92 | instantiation | 120, 126 | ⊢  |
| | : , :  |
| 93 | instantiation | 121, 122 | ⊢  |
| | : , : , :  |
| 94 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 95 | instantiation | 106, 107 | ⊢  |
| | : , : , :  |
| 96 | instantiation | 108, 109, 126, 110, 111, 128, 112 | ⊢  |
| | : , : , : , : , : , : , :  |
| 97 | instantiation | 145, 143, 113 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 99 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat8 |
| 100 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 101 | instantiation | 119 | ⊢  |
| | : , :  |
| 102 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 103 | instantiation | 115, 114, 117 | ⊢  |
| | : , : , :  |
| 104 | instantiation | 115, 116, 117 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 106 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 107 | instantiation | 118, 137 | ⊢  |
| | :  |
| 108 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 110 | instantiation | 119 | ⊢  |
| | : , :  |
| 111 | instantiation | 120, 126 | ⊢  |
| | : , :  |
| 112 | instantiation | 121, 122 | ⊢  |
| | : , : , :  |
| 113 | instantiation | 145, 146, 123 | ⊢  |
| | : , : , :  |
| 114 | instantiation | 125, 147, 123, 124 | ⊢  |
| | : , : , : , : , :  |
| 115 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 116 | instantiation | 125, 126, 127, 128, 129 | ⊢  |
| | : , : , : , : , :  |
| 117 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 118 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 119 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 120 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 121 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 122 | instantiation | 130, 131, 132 | ⊢  |
| | : , : , :  |
| 123 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 124 | instantiation | 133 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 125 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 126 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 127 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 128 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 129 | instantiation | 134 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 130 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 131 | instantiation | 135, 137 | ⊢  |
| | :  |
| 132 | instantiation | 136, 137, 138 | ⊢  |
| | : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 134 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 135 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 136 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 137 | instantiation | 145, 139, 140 | ⊢  |
| | : , : , :  |
| 138 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 139 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 140 | instantiation | 145, 141, 142 | ⊢  |
| | : , : , :  |
| 141 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 142 | instantiation | 145, 143, 144 | ⊢  |
| | : , : , :  |
| 143 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 144 | instantiation | 145, 146, 147 | ⊢  |
| | : , : , :  |
| 145 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 146 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 147 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |