| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | ⊢ |
| : , : , : , : , : , : |
1 | reference | 63 | ⊢ |
2 | reference | 126 | ⊢ |
3 | reference | 109 | ⊢ |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
5 | reference | 128 | ⊢ |
6 | instantiation | 119 | ⊢ |
| : , : |
7 | instantiation | 12 | ⊢ |
| : , : , : , : , : , : |
8 | instantiation | 145, 139, 13 | ⊢ |
| : , : , : |
9 | reference | 137 | ⊢ |
10 | reference | 41 | ⊢ |
11 | instantiation | 94, 14, 15 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
13 | instantiation | 145, 141, 16 | ⊢ |
| : , : , : |
14 | instantiation | 106, 17 | ⊢ |
| : , : , : |
15 | instantiation | 63, 126, 109, 59, 128, 18, 19, 20, 137, 41, 21* | ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 145, 143, 22 | ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
18 | instantiation | 119 | ⊢ |
| : , : |
19 | instantiation | 23 | ⊢ |
| : , : , : , : , : |
20 | instantiation | 145, 139, 24 | ⊢ |
| : , : , : |
21 | instantiation | 94, 25, 26 | ⊢ |
| : , : , : |
22 | instantiation | 145, 146, 109 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
24 | instantiation | 145, 141, 27 | ⊢ |
| : , : , : |
25 | instantiation | 106, 28 | ⊢ |
| : , : , : |
26 | instantiation | 63, 126, 109, 60, 128, 29, 30, 41, 137, 31* | ⊢ |
| : , : , : , : , : , : |
27 | instantiation | 145, 143, 32 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_1 |
29 | instantiation | 119 | ⊢ |
| : , : |
30 | instantiation | 33 | ⊢ |
| : , : , : , : |
31 | instantiation | 94, 34, 35 | ⊢ |
| : , : , : |
32 | instantiation | 145, 146, 37 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
34 | instantiation | 106, 36 | ⊢ |
| : , : , : |
35 | instantiation | 63, 126, 109, 37, 128, 38, 39, 40, 41, 137, 42* | ⊢ |
| : , : , : , : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
38 | instantiation | 119 | ⊢ |
| : , : |
39 | instantiation | 43 | ⊢ |
| : , : , : |
40 | instantiation | 145, 139, 44 | ⊢ |
| : , : , : |
41 | instantiation | 145, 139, 45 | ⊢ |
| : , : , : |
42 | instantiation | 94, 46, 47 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
44 | instantiation | 145, 141, 48 | ⊢ |
| : , : , : |
45 | instantiation | 145, 141, 49 | ⊢ |
| : , : , : |
46 | instantiation | 106, 50 | ⊢ |
| : , : , : |
47 | instantiation | 63, 126, 109, 128, 51, 110, 52, 137, 53* | ⊢ |
| : , : , : , : , : , : |
48 | instantiation | 145, 143, 54 | ⊢ |
| : , : , : |
49 | instantiation | 145, 143, 55 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
51 | instantiation | 119 | ⊢ |
| : , : |
52 | instantiation | 145, 139, 56 | ⊢ |
| : , : , : |
53 | instantiation | 94, 57, 58 | ⊢ |
| : , : , : |
54 | instantiation | 145, 146, 59 | ⊢ |
| : , : , : |
55 | instantiation | 145, 146, 60 | ⊢ |
| : , : , : |
56 | instantiation | 145, 141, 61 | ⊢ |
| : , : , : |
57 | instantiation | 106, 62 | ⊢ |
| : , : , : |
58 | instantiation | 63, 126, 109, 147, 128, 64, 65, 137, 66* | ⊢ |
| : , : , : , : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
61 | instantiation | 145, 143, 67 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
63 | theorem | | ⊢ |
| proveit.numbers.addition.association |
64 | instantiation | 119 | ⊢ |
| : , : |
65 | instantiation | 145, 139, 68 | ⊢ |
| : , : , : |
66 | instantiation | 94, 69, 70 | ⊢ |
| : , : , : |
67 | instantiation | 145, 146, 127 | ⊢ |
| : , : , : |
68 | instantiation | 145, 141, 71 | ⊢ |
| : , : , : |
69 | instantiation | 106, 72 | ⊢ |
| : , : , : |
70 | instantiation | 77, 147, 126, 103, 73, 74*, 75* | ⊢ |
| : , : , : , : |
71 | instantiation | 145, 143, 76 | ⊢ |
| : , : , : |
72 | instantiation | 77, 147, 126, 103, 104, 78, 79*, 80* | ⊢ |
| : , : , : , : |
73 | instantiation | 81, 140, 82, 83, 84, 122*, 85* | ⊢ |
| : , : , : |
74 | instantiation | 108, 109, 126, 110, 92, 128, 93 | ⊢ |
| : , : , : , : , : , : , : |
75 | instantiation | 94, 86, 87 | ⊢ |
| : , : , : |
76 | instantiation | 145, 88, 89 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
78 | instantiation | 98, 90 | ⊢ |
| : |
79 | instantiation | 108, 109, 126, 91, 92, 128, 93 | ⊢ |
| : , : , : , : , : , : , : |
80 | instantiation | 94, 95, 96 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
83 | instantiation | 145, 141, 97 | ⊢ |
| : , : , : |
84 | instantiation | 98, 99 | ⊢ |
| : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
86 | instantiation | 106, 100 | ⊢ |
| : , : , : |
87 | instantiation | 108, 109, 126, 101, 111, 128, 112 | ⊢ |
| : , : , : , : , : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
89 | instantiation | 102, 147, 103, 104, 105 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
91 | instantiation | 119 | ⊢ |
| : , : |
92 | instantiation | 120, 126 | ⊢ |
| : , : |
93 | instantiation | 121, 122 | ⊢ |
| : , : , : |
94 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
95 | instantiation | 106, 107 | ⊢ |
| : , : , : |
96 | instantiation | 108, 109, 126, 110, 111, 128, 112 | ⊢ |
| : , : , : , : , : , : , : |
97 | instantiation | 145, 143, 113 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
101 | instantiation | 119 | ⊢ |
| : , : |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
103 | instantiation | 115, 114, 117 | ⊢ |
| : , : , : |
104 | instantiation | 115, 116, 117 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
106 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
107 | instantiation | 118, 137 | ⊢ |
| : |
108 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
110 | instantiation | 119 | ⊢ |
| : , : |
111 | instantiation | 120, 126 | ⊢ |
| : , : |
112 | instantiation | 121, 122 | ⊢ |
| : , : , : |
113 | instantiation | 145, 146, 123 | ⊢ |
| : , : , : |
114 | instantiation | 125, 147, 123, 124 | ⊢ |
| : , : , : , : , : |
115 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
116 | instantiation | 125, 126, 127, 128, 129 | ⊢ |
| : , : , : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
118 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
119 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
120 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
121 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
122 | instantiation | 130, 131, 132 | ⊢ |
| : , : , : |
123 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
124 | instantiation | 133 | ⊢ |
| : , : , : , : , : , : , : , : |
125 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
126 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
127 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
128 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
129 | instantiation | 134 | ⊢ |
| : , : , : , : , : , : , : , : , : |
130 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
131 | instantiation | 135, 137 | ⊢ |
| : |
132 | instantiation | 136, 137, 138 | ⊢ |
| : , : |
133 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
134 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
135 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
136 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
137 | instantiation | 145, 139, 140 | ⊢ |
| : , : , : |
138 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
139 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
140 | instantiation | 145, 141, 142 | ⊢ |
| : , : , : |
141 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
142 | instantiation | 145, 143, 144 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
144 | instantiation | 145, 146, 147 | ⊢ |
| : , : , : |
145 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
146 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
147 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |