| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | ⊢  |
| : , : , : , : , : , :  |
1 | reference | 32 | ⊢  |
2 | reference | 95 | ⊢  |
3 | reference | 78 | ⊢  |
4 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
5 | reference | 97 | ⊢  |
6 | instantiation | 88 | ⊢  |
| : , :  |
7 | instantiation | 12 | ⊢  |
| : , : , :  |
8 | instantiation | 114, 108, 13 | ⊢  |
| : , : , :  |
9 | instantiation | 114, 108, 14 | ⊢  |
| : , : , :  |
10 | reference | 106 | ⊢  |
11 | instantiation | 63, 15, 16 | ⊢  |
| : , : , :  |
12 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
13 | instantiation | 114, 110, 17 | ⊢  |
| : , : , :  |
14 | instantiation | 114, 110, 18 | ⊢  |
| : , : , :  |
15 | instantiation | 75, 19 | ⊢  |
| : , : , :  |
16 | instantiation | 32, 95, 78, 97, 20, 79, 21, 106, 22* | ⊢  |
| : , : , : , : , : , :  |
17 | instantiation | 114, 112, 23 | ⊢  |
| : , : , :  |
18 | instantiation | 114, 112, 24 | ⊢  |
| : , : , :  |
19 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_5_4 |
20 | instantiation | 88 | ⊢  |
| : , :  |
21 | instantiation | 114, 108, 25 | ⊢  |
| : , : , :  |
22 | instantiation | 63, 26, 27 | ⊢  |
| : , : , :  |
23 | instantiation | 114, 115, 28 | ⊢  |
| : , : , :  |
24 | instantiation | 114, 115, 29 | ⊢  |
| : , : , :  |
25 | instantiation | 114, 110, 30 | ⊢  |
| : , : , :  |
26 | instantiation | 75, 31 | ⊢  |
| : , : , :  |
27 | instantiation | 32, 95, 78, 116, 97, 33, 34, 106, 35* | ⊢  |
| : , : , : , : , : , :  |
28 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
29 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
30 | instantiation | 114, 112, 36 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_9_1 |
32 | theorem | | ⊢  |
| proveit.numbers.addition.association |
33 | instantiation | 88 | ⊢  |
| : , :  |
34 | instantiation | 114, 108, 37 | ⊢  |
| : , : , :  |
35 | instantiation | 63, 38, 39 | ⊢  |
| : , : , :  |
36 | instantiation | 114, 115, 96 | ⊢  |
| : , : , :  |
37 | instantiation | 114, 110, 40 | ⊢  |
| : , : , :  |
38 | instantiation | 75, 41 | ⊢  |
| : , : , :  |
39 | instantiation | 46, 116, 95, 72, 42, 43*, 44* | ⊢  |
| : , : , : , :  |
40 | instantiation | 114, 112, 45 | ⊢  |
| : , : , :  |
41 | instantiation | 46, 116, 95, 72, 73, 47, 48*, 49* | ⊢  |
| : , : , : , :  |
42 | instantiation | 50, 109, 51, 52, 53, 91*, 54* | ⊢  |
| : , : , :  |
43 | instantiation | 77, 78, 95, 79, 61, 97, 62 | ⊢  |
| : , : , : , : , : , : , :  |
44 | instantiation | 63, 55, 56 | ⊢  |
| : , : , :  |
45 | instantiation | 114, 57, 58 | ⊢  |
| : , : , :  |
46 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.md_nine_add_one |
47 | instantiation | 67, 59 | ⊢  |
| :  |
48 | instantiation | 77, 78, 95, 60, 61, 97, 62 | ⊢  |
| : , : , : , : , : , : , :  |
49 | instantiation | 63, 64, 65 | ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
51 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
52 | instantiation | 114, 110, 66 | ⊢  |
| : , : , :  |
53 | instantiation | 67, 68 | ⊢  |
| :  |
54 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_8_1 |
55 | instantiation | 75, 69 | ⊢  |
| : , : , :  |
56 | instantiation | 77, 78, 95, 70, 80, 97, 81 | ⊢  |
| : , : , : , : , : , : , :  |
57 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
58 | instantiation | 71, 116, 72, 73, 74 | ⊢  |
| : , : , :  |
59 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat9 |
60 | instantiation | 88 | ⊢  |
| : , :  |
61 | instantiation | 89, 95 | ⊢  |
| : , :  |
62 | instantiation | 90, 91 | ⊢  |
| : , : , :  |
63 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
64 | instantiation | 75, 76 | ⊢  |
| : , : , :  |
65 | instantiation | 77, 78, 95, 79, 80, 97, 81 | ⊢  |
| : , : , : , : , : , : , :  |
66 | instantiation | 114, 112, 82 | ⊢  |
| : , : , :  |
67 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
68 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat8 |
69 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
70 | instantiation | 88 | ⊢  |
| : , :  |
71 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
72 | instantiation | 84, 83, 86 | ⊢  |
| : , : , :  |
73 | instantiation | 84, 85, 86 | ⊢  |
| : , : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_0_1 |
75 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
76 | instantiation | 87, 106 | ⊢  |
| :  |
77 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
78 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
79 | instantiation | 88 | ⊢  |
| : , :  |
80 | instantiation | 89, 95 | ⊢  |
| : , :  |
81 | instantiation | 90, 91 | ⊢  |
| : , : , :  |
82 | instantiation | 114, 115, 92 | ⊢  |
| : , : , :  |
83 | instantiation | 94, 116, 92, 93 | ⊢  |
| : , : , : , : , :  |
84 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
85 | instantiation | 94, 95, 96, 97, 98 | ⊢  |
| : , : , : , : , :  |
86 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
87 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
88 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
89 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
90 | axiom | | ⊢  |
| proveit.core_expr_types.tuples.empty_range_def |
91 | instantiation | 99, 100, 101 | ⊢  |
| : , : , :  |
92 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat8 |
93 | instantiation | 102 | ⊢  |
| : , : , : , : , : , : , : , :  |
94 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.in_enumerated_set |
95 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
96 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat9 |
97 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
98 | instantiation | 103 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
99 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
100 | instantiation | 104, 106 | ⊢  |
| :  |
101 | instantiation | 105, 106, 107 | ⊢  |
| : , :  |
102 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
103 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
104 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
105 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
106 | instantiation | 114, 108, 109 | ⊢  |
| : , : , :  |
107 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
108 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
109 | instantiation | 114, 110, 111 | ⊢  |
| : , : , :  |
110 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
111 | instantiation | 114, 112, 113 | ⊢  |
| : , : , :  |
112 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
113 | instantiation | 114, 115, 116 | ⊢  |
| : , : , :  |
114 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
115 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
116 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |