| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | ⊢ |
| : , : , : , : , : , : |
1 | reference | 32 | ⊢ |
2 | reference | 95 | ⊢ |
3 | reference | 78 | ⊢ |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
5 | reference | 97 | ⊢ |
6 | instantiation | 88 | ⊢ |
| : , : |
7 | instantiation | 12 | ⊢ |
| : , : , : |
8 | instantiation | 114, 108, 13 | ⊢ |
| : , : , : |
9 | instantiation | 114, 108, 14 | ⊢ |
| : , : , : |
10 | reference | 106 | ⊢ |
11 | instantiation | 63, 15, 16 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
13 | instantiation | 114, 110, 17 | ⊢ |
| : , : , : |
14 | instantiation | 114, 110, 18 | ⊢ |
| : , : , : |
15 | instantiation | 75, 19 | ⊢ |
| : , : , : |
16 | instantiation | 32, 95, 78, 97, 20, 79, 21, 106, 22* | ⊢ |
| : , : , : , : , : , : |
17 | instantiation | 114, 112, 23 | ⊢ |
| : , : , : |
18 | instantiation | 114, 112, 24 | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
20 | instantiation | 88 | ⊢ |
| : , : |
21 | instantiation | 114, 108, 25 | ⊢ |
| : , : , : |
22 | instantiation | 63, 26, 27 | ⊢ |
| : , : , : |
23 | instantiation | 114, 115, 28 | ⊢ |
| : , : , : |
24 | instantiation | 114, 115, 29 | ⊢ |
| : , : , : |
25 | instantiation | 114, 110, 30 | ⊢ |
| : , : , : |
26 | instantiation | 75, 31 | ⊢ |
| : , : , : |
27 | instantiation | 32, 95, 78, 116, 97, 33, 34, 106, 35* | ⊢ |
| : , : , : , : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
30 | instantiation | 114, 112, 36 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
32 | theorem | | ⊢ |
| proveit.numbers.addition.association |
33 | instantiation | 88 | ⊢ |
| : , : |
34 | instantiation | 114, 108, 37 | ⊢ |
| : , : , : |
35 | instantiation | 63, 38, 39 | ⊢ |
| : , : , : |
36 | instantiation | 114, 115, 96 | ⊢ |
| : , : , : |
37 | instantiation | 114, 110, 40 | ⊢ |
| : , : , : |
38 | instantiation | 75, 41 | ⊢ |
| : , : , : |
39 | instantiation | 46, 116, 95, 72, 42, 43*, 44* | ⊢ |
| : , : , : , : |
40 | instantiation | 114, 112, 45 | ⊢ |
| : , : , : |
41 | instantiation | 46, 116, 95, 72, 73, 47, 48*, 49* | ⊢ |
| : , : , : , : |
42 | instantiation | 50, 109, 51, 52, 53, 91*, 54* | ⊢ |
| : , : , : |
43 | instantiation | 77, 78, 95, 79, 61, 97, 62 | ⊢ |
| : , : , : , : , : , : , : |
44 | instantiation | 63, 55, 56 | ⊢ |
| : , : , : |
45 | instantiation | 114, 57, 58 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
47 | instantiation | 67, 59 | ⊢ |
| : |
48 | instantiation | 77, 78, 95, 60, 61, 97, 62 | ⊢ |
| : , : , : , : , : , : , : |
49 | instantiation | 63, 64, 65 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
52 | instantiation | 114, 110, 66 | ⊢ |
| : , : , : |
53 | instantiation | 67, 68 | ⊢ |
| : |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
55 | instantiation | 75, 69 | ⊢ |
| : , : , : |
56 | instantiation | 77, 78, 95, 70, 80, 97, 81 | ⊢ |
| : , : , : , : , : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
58 | instantiation | 71, 116, 72, 73, 74 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
60 | instantiation | 88 | ⊢ |
| : , : |
61 | instantiation | 89, 95 | ⊢ |
| : , : |
62 | instantiation | 90, 91 | ⊢ |
| : , : , : |
63 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
64 | instantiation | 75, 76 | ⊢ |
| : , : , : |
65 | instantiation | 77, 78, 95, 79, 80, 97, 81 | ⊢ |
| : , : , : , : , : , : , : |
66 | instantiation | 114, 112, 82 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
70 | instantiation | 88 | ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
72 | instantiation | 84, 83, 86 | ⊢ |
| : , : , : |
73 | instantiation | 84, 85, 86 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
75 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
76 | instantiation | 87, 106 | ⊢ |
| : |
77 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
79 | instantiation | 88 | ⊢ |
| : , : |
80 | instantiation | 89, 95 | ⊢ |
| : , : |
81 | instantiation | 90, 91 | ⊢ |
| : , : , : |
82 | instantiation | 114, 115, 92 | ⊢ |
| : , : , : |
83 | instantiation | 94, 116, 92, 93 | ⊢ |
| : , : , : , : , : |
84 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
85 | instantiation | 94, 95, 96, 97, 98 | ⊢ |
| : , : , : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
87 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
88 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
89 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
90 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
91 | instantiation | 99, 100, 101 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
93 | instantiation | 102 | ⊢ |
| : , : , : , : , : , : , : , : |
94 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
95 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
96 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
97 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
98 | instantiation | 103 | ⊢ |
| : , : , : , : , : , : , : , : , : |
99 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
100 | instantiation | 104, 106 | ⊢ |
| : |
101 | instantiation | 105, 106, 107 | ⊢ |
| : , : |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
104 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
105 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
106 | instantiation | 114, 108, 109 | ⊢ |
| : , : , : |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
108 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
109 | instantiation | 114, 110, 111 | ⊢ |
| : , : , : |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
111 | instantiation | 114, 112, 113 | ⊢ |
| : , : , : |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
113 | instantiation | 114, 115, 116 | ⊢ |
| : , : , : |
114 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
115 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
116 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |