| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7*, 8* | ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 2 | reference | 57 | ⊢  |
| 3 | reference | 39 | ⊢  |
| 4 | instantiation | 10, 9, 12 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 10, 11, 12 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 13, 14 | ⊢  |
| | :  |
| 7 | instantiation | 28, 29, 39, 15, 16, 32, 17 | ⊢  |
| | : , : , : , : , : , : , :  |
| 8 | instantiation | 18, 19, 20 | ⊢  |
| | : , : , :  |
| 9 | instantiation | 23, 57, 21, 22 | ⊢  |
| | : , : , : , : , :  |
| 10 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 11 | instantiation | 23, 39, 24, 32, 25 | ⊢  |
| | : , : , : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 13 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 14 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 15 | instantiation | 37 | ⊢  |
| | : , :  |
| 16 | instantiation | 38, 39 | ⊢  |
| | : , :  |
| 17 | instantiation | 40, 41 | ⊢  |
| | : , : , :  |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 19 | instantiation | 26, 27 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 28, 29, 39, 30, 31, 32, 33 | ⊢  |
| | : , : , : , : , : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 22 | instantiation | 34 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 23 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 24 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 25 | instantiation | 35 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 26 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 27 | instantiation | 36, 47 | ⊢  |
| | :  |
| 28 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 30 | instantiation | 37 | ⊢  |
| | : , :  |
| 31 | instantiation | 38, 39 | ⊢  |
| | : , :  |
| 32 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 33 | instantiation | 40, 41 | ⊢  |
| | : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 36 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 38 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 39 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 40 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 41 | instantiation | 42, 43, 44 | ⊢  |
| | : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 43 | instantiation | 45, 47 | ⊢  |
| | :  |
| 44 | instantiation | 46, 47, 48 | ⊢  |
| | : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 46 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 47 | instantiation | 55, 49, 50 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 50 | instantiation | 55, 51, 52 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 52 | instantiation | 55, 53, 54 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 54 | instantiation | 55, 56, 57 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 57 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |