| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 69 | ⊢ |
2 | instantiation | 81, 4 | ⊢ |
| : , : , : |
3 | instantiation | 38, 101, 84, 35, 103, 5, 6, 16, 112, 7* | ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_1 |
5 | instantiation | 94 | ⊢ |
| : , : |
6 | instantiation | 8 | ⊢ |
| : , : , : , : |
7 | instantiation | 69, 9, 10 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
9 | instantiation | 81, 11 | ⊢ |
| : , : , : |
10 | instantiation | 38, 101, 84, 12, 103, 13, 14, 15, 16, 112, 17* | ⊢ |
| : , : , : , : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
13 | instantiation | 94 | ⊢ |
| : , : |
14 | instantiation | 18 | ⊢ |
| : , : , : |
15 | instantiation | 120, 114, 19 | ⊢ |
| : , : , : |
16 | instantiation | 120, 114, 20 | ⊢ |
| : , : , : |
17 | instantiation | 69, 21, 22 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
19 | instantiation | 120, 116, 23 | ⊢ |
| : , : , : |
20 | instantiation | 120, 116, 24 | ⊢ |
| : , : , : |
21 | instantiation | 81, 25 | ⊢ |
| : , : , : |
22 | instantiation | 38, 101, 84, 103, 26, 85, 27, 112, 28* | ⊢ |
| : , : , : , : , : , : |
23 | instantiation | 120, 118, 29 | ⊢ |
| : , : , : |
24 | instantiation | 120, 118, 30 | ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_4 |
26 | instantiation | 94 | ⊢ |
| : , : |
27 | instantiation | 120, 114, 31 | ⊢ |
| : , : , : |
28 | instantiation | 69, 32, 33 | ⊢ |
| : , : , : |
29 | instantiation | 120, 121, 34 | ⊢ |
| : , : , : |
30 | instantiation | 120, 121, 35 | ⊢ |
| : , : , : |
31 | instantiation | 120, 116, 36 | ⊢ |
| : , : , : |
32 | instantiation | 81, 37 | ⊢ |
| : , : , : |
33 | instantiation | 38, 101, 84, 122, 103, 39, 40, 112, 41* | ⊢ |
| : , : , : , : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
36 | instantiation | 120, 118, 42 | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
38 | theorem | | ⊢ |
| proveit.numbers.addition.association |
39 | instantiation | 94 | ⊢ |
| : , : |
40 | instantiation | 120, 114, 43 | ⊢ |
| : , : , : |
41 | instantiation | 69, 44, 45 | ⊢ |
| : , : , : |
42 | instantiation | 120, 121, 102 | ⊢ |
| : , : , : |
43 | instantiation | 120, 116, 46 | ⊢ |
| : , : , : |
44 | instantiation | 81, 47 | ⊢ |
| : , : , : |
45 | instantiation | 52, 122, 101, 78, 48, 49*, 50* | ⊢ |
| : , : , : , : |
46 | instantiation | 120, 118, 51 | ⊢ |
| : , : , : |
47 | instantiation | 52, 122, 101, 78, 79, 53, 54*, 55* | ⊢ |
| : , : , : , : |
48 | instantiation | 56, 115, 57, 58, 59, 97*, 60* | ⊢ |
| : , : , : |
49 | instantiation | 83, 84, 101, 85, 67, 103, 68 | ⊢ |
| : , : , : , : , : , : , : |
50 | instantiation | 69, 61, 62 | ⊢ |
| : , : , : |
51 | instantiation | 120, 63, 64 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
53 | instantiation | 73, 65 | ⊢ |
| : |
54 | instantiation | 83, 84, 101, 66, 67, 103, 68 | ⊢ |
| : , : , : , : , : , : , : |
55 | instantiation | 69, 70, 71 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
58 | instantiation | 120, 116, 72 | ⊢ |
| : , : , : |
59 | instantiation | 73, 74 | ⊢ |
| : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
61 | instantiation | 81, 75 | ⊢ |
| : , : , : |
62 | instantiation | 83, 84, 101, 76, 86, 103, 87 | ⊢ |
| : , : , : , : , : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
64 | instantiation | 77, 122, 78, 79, 80 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
66 | instantiation | 94 | ⊢ |
| : , : |
67 | instantiation | 95, 101 | ⊢ |
| : , : |
68 | instantiation | 96, 97 | ⊢ |
| : , : , : |
69 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
70 | instantiation | 81, 82 | ⊢ |
| : , : , : |
71 | instantiation | 83, 84, 101, 85, 86, 103, 87 | ⊢ |
| : , : , : , : , : , : , : |
72 | instantiation | 120, 118, 88 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
76 | instantiation | 94 | ⊢ |
| : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
78 | instantiation | 90, 89, 92 | ⊢ |
| : , : , : |
79 | instantiation | 90, 91, 92 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
81 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
82 | instantiation | 93, 112 | ⊢ |
| : |
83 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
85 | instantiation | 94 | ⊢ |
| : , : |
86 | instantiation | 95, 101 | ⊢ |
| : , : |
87 | instantiation | 96, 97 | ⊢ |
| : , : , : |
88 | instantiation | 120, 121, 98 | ⊢ |
| : , : , : |
89 | instantiation | 100, 122, 98, 99 | ⊢ |
| : , : , : , : , : |
90 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
91 | instantiation | 100, 101, 102, 103, 104 | ⊢ |
| : , : , : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
93 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
95 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
96 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
97 | instantiation | 105, 106, 107 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
99 | instantiation | 108 | ⊢ |
| : , : , : , : , : , : , : , : |
100 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
101 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
103 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
104 | instantiation | 109 | ⊢ |
| : , : , : , : , : , : , : , : , : |
105 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
106 | instantiation | 110, 112 | ⊢ |
| : |
107 | instantiation | 111, 112, 113 | ⊢ |
| : , : |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
110 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
111 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
112 | instantiation | 120, 114, 115 | ⊢ |
| : , : , : |
113 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
114 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
115 | instantiation | 120, 116, 117 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
117 | instantiation | 120, 118, 119 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
119 | instantiation | 120, 121, 122 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
122 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |