| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9* | ⊢  |
| | : , : , : , : , : , :  |
| 1 | reference | 15 | ⊢  |
| 2 | reference | 78 | ⊢  |
| 3 | reference | 61 | ⊢  |
| 4 | reference | 80 | ⊢  |
| 5 | instantiation | 71 | ⊢  |
| | : , :  |
| 6 | reference | 62 | ⊢  |
| 7 | instantiation | 97, 91, 10 | ⊢  |
| | : , : , :  |
| 8 | reference | 89 | ⊢  |
| 9 | instantiation | 46, 11, 12 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 97, 93, 13 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 58, 14 | ⊢  |
| | : , : , :  |
| 12 | instantiation | 15, 78, 61, 99, 80, 16, 17, 89, 18* | ⊢  |
| | : , : , : , : , : , :  |
| 13 | instantiation | 97, 95, 19 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_1 |
| 15 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 16 | instantiation | 71 | ⊢  |
| | : , :  |
| 17 | instantiation | 97, 91, 20 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 46, 21, 22 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 97, 98, 79 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 97, 93, 23 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 58, 24 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 29, 99, 78, 55, 25, 26*, 27* | ⊢  |
| | : , : , : , :  |
| 23 | instantiation | 97, 95, 28 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 29, 99, 78, 55, 56, 30, 31*, 32* | ⊢  |
| | : , : , : , :  |
| 25 | instantiation | 33, 92, 34, 35, 36, 74*, 37* | ⊢  |
| | : , : , :  |
| 26 | instantiation | 60, 61, 78, 62, 44, 80, 45 | ⊢  |
| | : , : , : , : , : , : , :  |
| 27 | instantiation | 46, 38, 39 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 97, 40, 41 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 30 | instantiation | 50, 42 | ⊢  |
| | :  |
| 31 | instantiation | 60, 61, 78, 43, 44, 80, 45 | ⊢  |
| | : , : , : , : , : , : , :  |
| 32 | instantiation | 46, 47, 48 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 34 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 35 | instantiation | 97, 93, 49 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 50, 51 | ⊢  |
| | :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_8_1 |
| 38 | instantiation | 58, 52 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 60, 61, 78, 53, 63, 80, 64 | ⊢  |
| | : , : , : , : , : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 41 | instantiation | 54, 99, 55, 56, 57 | ⊢  |
| | : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 43 | instantiation | 71 | ⊢  |
| | : , :  |
| 44 | instantiation | 72, 78 | ⊢  |
| | : , :  |
| 45 | instantiation | 73, 74 | ⊢  |
| | : , : , :  |
| 46 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 47 | instantiation | 58, 59 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 60, 61, 78, 62, 63, 80, 64 | ⊢  |
| | : , : , : , : , : , : , :  |
| 49 | instantiation | 97, 95, 65 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat8 |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 53 | instantiation | 71 | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 55 | instantiation | 67, 66, 69 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 67, 68, 69 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 58 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 59 | instantiation | 70, 89 | ⊢  |
| | :  |
| 60 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 62 | instantiation | 71 | ⊢  |
| | : , :  |
| 63 | instantiation | 72, 78 | ⊢  |
| | : , :  |
| 64 | instantiation | 73, 74 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 97, 98, 75 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 77, 99, 75, 76 | ⊢  |
| | : , : , : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 68 | instantiation | 77, 78, 79, 80, 81 | ⊢  |
| | : , : , : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 70 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 72 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 73 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 74 | instantiation | 82, 83, 84 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 76 | instantiation | 85 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 78 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 80 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 81 | instantiation | 86 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 83 | instantiation | 87, 89 | ⊢  |
| | :  |
| 84 | instantiation | 88, 89, 90 | ⊢  |
| | : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 86 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 87 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 88 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 89 | instantiation | 97, 91, 92 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 92 | instantiation | 97, 93, 94 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 94 | instantiation | 97, 95, 96 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 96 | instantiation | 97, 98, 99 | ⊢  |
| | : , : , :  |
| 97 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 99 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |