| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9* | ⊢  |
| : , : , : , : , : , :  |
1 | reference | 15 | ⊢  |
2 | reference | 78 | ⊢  |
3 | reference | 61 | ⊢  |
4 | reference | 80 | ⊢  |
5 | instantiation | 71 | ⊢  |
| : , :  |
6 | reference | 62 | ⊢  |
7 | instantiation | 97, 91, 10 | ⊢  |
| : , : , :  |
8 | reference | 89 | ⊢  |
9 | instantiation | 46, 11, 12 | ⊢  |
| : , : , :  |
10 | instantiation | 97, 93, 13 | ⊢  |
| : , : , :  |
11 | instantiation | 58, 14 | ⊢  |
| : , : , :  |
12 | instantiation | 15, 78, 61, 99, 80, 16, 17, 89, 18* | ⊢  |
| : , : , : , : , : , :  |
13 | instantiation | 97, 95, 19 | ⊢  |
| : , : , :  |
14 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_9_1 |
15 | theorem | | ⊢  |
| proveit.numbers.addition.association |
16 | instantiation | 71 | ⊢  |
| : , :  |
17 | instantiation | 97, 91, 20 | ⊢  |
| : , : , :  |
18 | instantiation | 46, 21, 22 | ⊢  |
| : , : , :  |
19 | instantiation | 97, 98, 79 | ⊢  |
| : , : , :  |
20 | instantiation | 97, 93, 23 | ⊢  |
| : , : , :  |
21 | instantiation | 58, 24 | ⊢  |
| : , : , :  |
22 | instantiation | 29, 99, 78, 55, 25, 26*, 27* | ⊢  |
| : , : , : , :  |
23 | instantiation | 97, 95, 28 | ⊢  |
| : , : , :  |
24 | instantiation | 29, 99, 78, 55, 56, 30, 31*, 32* | ⊢  |
| : , : , : , :  |
25 | instantiation | 33, 92, 34, 35, 36, 74*, 37* | ⊢  |
| : , : , :  |
26 | instantiation | 60, 61, 78, 62, 44, 80, 45 | ⊢  |
| : , : , : , : , : , : , :  |
27 | instantiation | 46, 38, 39 | ⊢  |
| : , : , :  |
28 | instantiation | 97, 40, 41 | ⊢  |
| : , : , :  |
29 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.md_nine_add_one |
30 | instantiation | 50, 42 | ⊢  |
| :  |
31 | instantiation | 60, 61, 78, 43, 44, 80, 45 | ⊢  |
| : , : , : , : , : , : , :  |
32 | instantiation | 46, 47, 48 | ⊢  |
| : , : , :  |
33 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
34 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
35 | instantiation | 97, 93, 49 | ⊢  |
| : , : , :  |
36 | instantiation | 50, 51 | ⊢  |
| :  |
37 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_8_1 |
38 | instantiation | 58, 52 | ⊢  |
| : , : , :  |
39 | instantiation | 60, 61, 78, 53, 63, 80, 64 | ⊢  |
| : , : , : , : , : , : , :  |
40 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
41 | instantiation | 54, 99, 55, 56, 57 | ⊢  |
| : , : , :  |
42 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat9 |
43 | instantiation | 71 | ⊢  |
| : , :  |
44 | instantiation | 72, 78 | ⊢  |
| : , :  |
45 | instantiation | 73, 74 | ⊢  |
| : , : , :  |
46 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
47 | instantiation | 58, 59 | ⊢  |
| : , : , :  |
48 | instantiation | 60, 61, 78, 62, 63, 80, 64 | ⊢  |
| : , : , : , : , : , : , :  |
49 | instantiation | 97, 95, 65 | ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
51 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat8 |
52 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
53 | instantiation | 71 | ⊢  |
| : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
55 | instantiation | 67, 66, 69 | ⊢  |
| : , : , :  |
56 | instantiation | 67, 68, 69 | ⊢  |
| : , : , :  |
57 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_0_1 |
58 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
59 | instantiation | 70, 89 | ⊢  |
| :  |
60 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
61 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
62 | instantiation | 71 | ⊢  |
| : , :  |
63 | instantiation | 72, 78 | ⊢  |
| : , :  |
64 | instantiation | 73, 74 | ⊢  |
| : , : , :  |
65 | instantiation | 97, 98, 75 | ⊢  |
| : , : , :  |
66 | instantiation | 77, 99, 75, 76 | ⊢  |
| : , : , : , : , :  |
67 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
68 | instantiation | 77, 78, 79, 80, 81 | ⊢  |
| : , : , : , : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
70 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
71 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
72 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
73 | axiom | | ⊢  |
| proveit.core_expr_types.tuples.empty_range_def |
74 | instantiation | 82, 83, 84 | ⊢  |
| : , : , :  |
75 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat8 |
76 | instantiation | 85 | ⊢  |
| : , : , : , : , : , : , : , :  |
77 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.in_enumerated_set |
78 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
79 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat9 |
80 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
81 | instantiation | 86 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
82 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
83 | instantiation | 87, 89 | ⊢  |
| :  |
84 | instantiation | 88, 89, 90 | ⊢  |
| : , :  |
85 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
86 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
87 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
88 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
89 | instantiation | 97, 91, 92 | ⊢  |
| : , : , :  |
90 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
91 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
92 | instantiation | 97, 93, 94 | ⊢  |
| : , : , :  |
93 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 97, 95, 96 | ⊢  |
| : , : , :  |
95 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
96 | instantiation | 97, 98, 99 | ⊢  |
| : , : , :  |
97 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
98 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
99 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |