| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9* | ⊢ |
| : , : , : , : , : , : |
1 | reference | 15 | ⊢ |
2 | reference | 78 | ⊢ |
3 | reference | 61 | ⊢ |
4 | reference | 80 | ⊢ |
5 | instantiation | 71 | ⊢ |
| : , : |
6 | reference | 62 | ⊢ |
7 | instantiation | 97, 91, 10 | ⊢ |
| : , : , : |
8 | reference | 89 | ⊢ |
9 | instantiation | 46, 11, 12 | ⊢ |
| : , : , : |
10 | instantiation | 97, 93, 13 | ⊢ |
| : , : , : |
11 | instantiation | 58, 14 | ⊢ |
| : , : , : |
12 | instantiation | 15, 78, 61, 99, 80, 16, 17, 89, 18* | ⊢ |
| : , : , : , : , : , : |
13 | instantiation | 97, 95, 19 | ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
15 | theorem | | ⊢ |
| proveit.numbers.addition.association |
16 | instantiation | 71 | ⊢ |
| : , : |
17 | instantiation | 97, 91, 20 | ⊢ |
| : , : , : |
18 | instantiation | 46, 21, 22 | ⊢ |
| : , : , : |
19 | instantiation | 97, 98, 79 | ⊢ |
| : , : , : |
20 | instantiation | 97, 93, 23 | ⊢ |
| : , : , : |
21 | instantiation | 58, 24 | ⊢ |
| : , : , : |
22 | instantiation | 29, 99, 78, 55, 25, 26*, 27* | ⊢ |
| : , : , : , : |
23 | instantiation | 97, 95, 28 | ⊢ |
| : , : , : |
24 | instantiation | 29, 99, 78, 55, 56, 30, 31*, 32* | ⊢ |
| : , : , : , : |
25 | instantiation | 33, 92, 34, 35, 36, 74*, 37* | ⊢ |
| : , : , : |
26 | instantiation | 60, 61, 78, 62, 44, 80, 45 | ⊢ |
| : , : , : , : , : , : , : |
27 | instantiation | 46, 38, 39 | ⊢ |
| : , : , : |
28 | instantiation | 97, 40, 41 | ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
30 | instantiation | 50, 42 | ⊢ |
| : |
31 | instantiation | 60, 61, 78, 43, 44, 80, 45 | ⊢ |
| : , : , : , : , : , : , : |
32 | instantiation | 46, 47, 48 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
34 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
35 | instantiation | 97, 93, 49 | ⊢ |
| : , : , : |
36 | instantiation | 50, 51 | ⊢ |
| : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_8_1 |
38 | instantiation | 58, 52 | ⊢ |
| : , : , : |
39 | instantiation | 60, 61, 78, 53, 63, 80, 64 | ⊢ |
| : , : , : , : , : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
41 | instantiation | 54, 99, 55, 56, 57 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
43 | instantiation | 71 | ⊢ |
| : , : |
44 | instantiation | 72, 78 | ⊢ |
| : , : |
45 | instantiation | 73, 74 | ⊢ |
| : , : , : |
46 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
47 | instantiation | 58, 59 | ⊢ |
| : , : , : |
48 | instantiation | 60, 61, 78, 62, 63, 80, 64 | ⊢ |
| : , : , : , : , : , : , : |
49 | instantiation | 97, 95, 65 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat8 |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
53 | instantiation | 71 | ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
55 | instantiation | 67, 66, 69 | ⊢ |
| : , : , : |
56 | instantiation | 67, 68, 69 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
58 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
59 | instantiation | 70, 89 | ⊢ |
| : |
60 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
62 | instantiation | 71 | ⊢ |
| : , : |
63 | instantiation | 72, 78 | ⊢ |
| : , : |
64 | instantiation | 73, 74 | ⊢ |
| : , : , : |
65 | instantiation | 97, 98, 75 | ⊢ |
| : , : , : |
66 | instantiation | 77, 99, 75, 76 | ⊢ |
| : , : , : , : , : |
67 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
68 | instantiation | 77, 78, 79, 80, 81 | ⊢ |
| : , : , : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
70 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
72 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
73 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
74 | instantiation | 82, 83, 84 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
76 | instantiation | 85 | ⊢ |
| : , : , : , : , : , : , : , : |
77 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
78 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
80 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
81 | instantiation | 86 | ⊢ |
| : , : , : , : , : , : , : , : , : |
82 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
83 | instantiation | 87, 89 | ⊢ |
| : |
84 | instantiation | 88, 89, 90 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
87 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
88 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
89 | instantiation | 97, 91, 92 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
92 | instantiation | 97, 93, 94 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 97, 95, 96 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
96 | instantiation | 97, 98, 99 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |