| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3*, 4*, 5* | , , , ⊢  |
| | : , : , :  |
| 1 | reference | 64 | ⊢  |
| 2 | modus ponens | 6, 7 | , , , ⊢  |
| 3 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 4 | reference | 12 | ⊢  |
| 5 | instantiation | 81, 8, 9 | , , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 103, 104 | ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | generalization | 10 | , , , ⊢  |
| 8 | instantiation | 64, 11, 12*, 13* | , , , ⊢  |
| | : , : , :  |
| 9 | instantiation | 81, 14, 15 | , , , ⊢  |
| | : , : , :  |
| 10 | instantiation | 56, 57, 16, 126, 127 | , , , , ⊢  |
| | : , : , : , : , :  |
| 11 | modus ponens | 17, 18 | , , , ⊢  |
| 12 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 13 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 14 | instantiation | 81, 19, 20 | , , , ⊢  |
| | : , : , :  |
| 15 | instantiation | 64, 21 | , ⊢  |
| | : , : , :  |
| 16 | instantiation | 91, 57, 125, 22 | , , , ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 103, 104 | ⊢  |
| | : , : , : , : , : , : , :  |
| 18 | generalization | 23 | , , , ⊢  |
| 19 | instantiation | 81, 24, 25 | , ⊢  |
| | : , : , :  |
| 20 | instantiation | 27, 26 | , , , ⊢  |
| | : , :  |
| 21 | instantiation | 27, 28 | , ⊢  |
| | : , :  |
| 22 | instantiation | 91, 57, 128, 58 | , , ⊢  |
| | : , : , : , :  |
| 23 | instantiation | 81, 29, 30 | , , , , ⊢  |
| | : , : , :  |
| 24 | instantiation | 81, 31, 32 | , ⊢  |
| | : , : , :  |
| 25 | instantiation | 64, 33, 48*, 34* | , ⊢  |
| | : , : , :  |
| 26 | modus ponens | 35, 36 | , , , ⊢  |
| 27 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 28 | modus ponens | 37, 38 | , ⊢  |
| 29 | instantiation | 39, 153, 40, 41, 42, 43 | , , , , ⊢  |
| | : , : , : , :  |
| 30 | instantiation | 56, 57, 58, 60, 99, 44* | , , , , ⊢  |
| | : , : , : , : , :  |
| 31 | instantiation | 81, 45, 46 | , ⊢  |
| | : , : , :  |
| 32 | instantiation | 64, 47, 67*, 48* | , ⊢  |
| | : , : , :  |
| 33 | modus ponens | 49, 50 | , ⊢  |
| 34 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 35 | instantiation | 51, 104, 92, 108 | , ⊢  |
| | : , : , : , : , : , : , : , :  |
| 36 | modus ponens | 52, 53 | , ⊢  |
| 37 | instantiation | 54, 149, 104, 122, 92, 123 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 38 | generalization | 55 | , ⊢  |
| 39 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 40 | instantiation | 133 | ⊢  |
| | : , :  |
| 41 | instantiation | 133 | ⊢  |
| | : , :  |
| 42 | instantiation | 79, 126, 127 | , ⊢  |
| | : , :  |
| 43 | instantiation | 56, 57, 58, 125, 128, 59* | , , , ⊢  |
| | : , : , : , : , :  |
| 44 | instantiation | 79, 60, 99, 61* | , , ⊢  |
| | : , :  |
| 45 | instantiation | 64, 62, 63*, 66* | , ⊢  |
| | : , : , :  |
| 46 | instantiation | 64, 65, 66*, 67* | , ⊢  |
| | : , : , :  |
| 47 | modus ponens | 68, 69 | , ⊢  |
| 48 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 49 | instantiation | 103, 104 | ⊢  |
| | : , : , : , : , : , : , :  |
| 50 | generalization | 70 | , ⊢  |
| 51 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
| 52 | instantiation | 71, 104, 92 | ⊢  |
| | : , : , : , : , : , :  |
| 53 | generalization | 73 | , ⊢  |
| 54 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 55 | instantiation | 72, 73, 74 | , , ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 57 | instantiation | 109, 111, 75, 76 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 110, 111, 75, 76, 114, 77, 78 | , ⊢  |
| | : , : , : , :  |
| 59 | instantiation | 79, 125, 128 | , ⊢  |
| | : , :  |
| 60 | instantiation | 154, 136, 80 | , ⊢  |
| | : , : , :  |
| 61 | instantiation | 81, 82, 83 | , , ⊢  |
| | : , : , :  |
| 62 | modus ponens | 84, 85 | , ⊢  |
| 63 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 64 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 65 | modus ponens | 86, 87 | , ⊢  |
| 66 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 67 | instantiation | 88, 148 | ⊢  |
| | : , :  |
| 68 | instantiation | 103, 104 | ⊢  |
| | : , : , : , : , : , : , :  |
| 69 | generalization | 89 | , ⊢  |
| 70 | instantiation | 106, 149, 153, 122, 124, 123, 90, 127, 128 | , , ⊢  |
| | : , : , : , : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 72 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 73 | instantiation | 91, 92, 95, 93 | , , ⊢  |
| | : , : , : , :  |
| 74 | instantiation | 94, 95, 149, 122, 123, 113, 115, 116 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 75 | instantiation | 133 | ⊢  |
| | : , :  |
| 76 | instantiation | 96, 131 | ⊢  |
| | :  |
| 77 | instantiation | 97, 98, 115 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 97, 98, 116 | ⊢  |
| | : , : , :  |
| 79 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 80 | instantiation | 129, 135, 139 | , ⊢  |
| | : , :  |
| 81 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 82 | instantiation | 100, 122, 153, 149, 123, 120, 126, 127, 99 | , , ⊢  |
| | : , : , : , : , : , :  |
| 83 | instantiation | 100, 153, 122, 120, 101, 123, 126, 127, 125, 128 | , , ⊢  |
| | : , : , : , : , : , :  |
| 84 | instantiation | 103, 104 | ⊢  |
| | : , : , : , : , : , : , :  |
| 85 | generalization | 102 | , ⊢  |
| 86 | instantiation | 103, 104 | ⊢  |
| | : , : , : , : , : , : , :  |
| 87 | generalization | 105 | , ⊢  |
| 88 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 89 | instantiation | 106, 122, 153, 123, 107, 124, 126, 125, 127, 128 | , , ⊢  |
| | : , : , : , : , : , :  |
| 90 | instantiation | 154, 136, 108 | , ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 92 | instantiation | 109, 111, 112, 113 | ⊢  |
| | : , : , :  |
| 93 | instantiation | 110, 111, 112, 113, 114, 115, 116 | , ⊢  |
| | : , : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 95 | instantiation | 129, 139, 137 | ⊢  |
| | : , :  |
| 96 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 97 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 98 | instantiation | 117, 131, 118 | ⊢  |
| | : , : , :  |
| 99 | instantiation | 119, 125, 128 | , ⊢  |
| | : , :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 101 | instantiation | 133 | ⊢  |
| | : , :  |
| 102 | instantiation | 121, 122, 153, 149, 123, 120, 126, 127, 125, 128 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 104 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 105 | instantiation | 121, 122, 149, 153, 123, 124, 125, 126, 127, 128 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 106 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 107 | instantiation | 133 | ⊢  |
| | : , :  |
| 108 | instantiation | 129, 135, 134 | , ⊢  |
| | : , :  |
| 109 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 110 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 112 | instantiation | 133 | ⊢  |
| | : , :  |
| 113 | instantiation | 130, 131 | ⊢  |
| | :  |
| 114 | instantiation | 133 | ⊢  |
| | : , :  |
| 115 | assumption | | ⊢  |
| 116 | assumption | | ⊢  |
| 117 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 118 | instantiation | 132, 136 | ⊢  |
| | : , :  |
| 119 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 120 | instantiation | 133 | ⊢  |
| | : , :  |
| 121 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 122 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 123 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 124 | instantiation | 133 | ⊢  |
| | : , :  |
| 125 | instantiation | 154, 136, 134 | ⊢  |
| | : , : , :  |
| 126 | instantiation | 154, 136, 135 | ⊢  |
| | : , : , :  |
| 127 | instantiation | 154, 136, 139 | ⊢  |
| | : , : , :  |
| 128 | instantiation | 154, 136, 137 | ⊢  |
| | : , : , :  |
| 129 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 130 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 131 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 132 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 133 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 134 | assumption | | ⊢  |
| 135 | assumption | | ⊢  |
| 136 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 137 | instantiation | 138, 139, 140 | ⊢  |
| | : , :  |
| 138 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 139 | instantiation | 154, 142, 141 | ⊢  |
| | : , : , :  |
| 140 | instantiation | 154, 142, 143 | ⊢  |
| | : , : , :  |
| 141 | instantiation | 154, 145, 144 | ⊢  |
| | : , : , :  |
| 142 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 143 | instantiation | 154, 145, 146 | ⊢  |
| | : , : , :  |
| 144 | instantiation | 154, 147, 148 | ⊢  |
| | : , : , :  |
| 145 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 146 | instantiation | 154, 155, 149 | ⊢  |
| | : , : , :  |
| 147 | instantiation | 150, 151, 152 | ⊢  |
| | : , :  |
| 148 | assumption | | ⊢  |
| 149 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 150 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 151 | instantiation | 154, 155, 153 | ⊢  |
| | : , : , :  |
| 152 | instantiation | 154, 155, 156 | ⊢  |
| | : , : , :  |
| 153 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 154 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 155 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 156 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |