| step type | requirements | statement |
0 | instantiation | 1, 2, 3*, 4*, 5* | , , , ⊢  |
| : , : , :  |
1 | reference | 64 | ⊢  |
2 | modus ponens | 6, 7 | , , , ⊢  |
3 | instantiation | 88, 148 | ⊢  |
| : , :  |
4 | reference | 12 | ⊢  |
5 | instantiation | 81, 8, 9 | , , , ⊢  |
| : , : , :  |
6 | instantiation | 103, 104 | ⊢  |
| : , : , : , : , : , : , :  |
7 | generalization | 10 | , , , ⊢  |
8 | instantiation | 64, 11, 12*, 13* | , , , ⊢  |
| : , : , :  |
9 | instantiation | 81, 14, 15 | , , , ⊢  |
| : , : , :  |
10 | instantiation | 56, 57, 16, 126, 127 | , , , , ⊢  |
| : , : , : , : , :  |
11 | modus ponens | 17, 18 | , , , ⊢  |
12 | instantiation | 88, 148 | ⊢  |
| : , :  |
13 | instantiation | 88, 148 | ⊢  |
| : , :  |
14 | instantiation | 81, 19, 20 | , , , ⊢  |
| : , : , :  |
15 | instantiation | 64, 21 | , ⊢  |
| : , : , :  |
16 | instantiation | 91, 57, 125, 22 | , , , ⊢  |
| : , : , : , :  |
17 | instantiation | 103, 104 | ⊢  |
| : , : , : , : , : , : , :  |
18 | generalization | 23 | , , , ⊢  |
19 | instantiation | 81, 24, 25 | , ⊢  |
| : , : , :  |
20 | instantiation | 27, 26 | , , , ⊢  |
| : , :  |
21 | instantiation | 27, 28 | , ⊢  |
| : , :  |
22 | instantiation | 91, 57, 128, 58 | , , ⊢  |
| : , : , : , :  |
23 | instantiation | 81, 29, 30 | , , , , ⊢  |
| : , : , :  |
24 | instantiation | 81, 31, 32 | , ⊢  |
| : , : , :  |
25 | instantiation | 64, 33, 48*, 34* | , ⊢  |
| : , : , :  |
26 | modus ponens | 35, 36 | , , , ⊢  |
27 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
28 | modus ponens | 37, 38 | , ⊢  |
29 | instantiation | 39, 153, 40, 41, 42, 43 | , , , , ⊢  |
| : , : , : , :  |
30 | instantiation | 56, 57, 58, 60, 99, 44* | , , , , ⊢  |
| : , : , : , : , :  |
31 | instantiation | 81, 45, 46 | , ⊢  |
| : , : , :  |
32 | instantiation | 64, 47, 67*, 48* | , ⊢  |
| : , : , :  |
33 | modus ponens | 49, 50 | , ⊢  |
34 | instantiation | 88, 148 | ⊢  |
| : , :  |
35 | instantiation | 51, 104, 92, 108 | , ⊢  |
| : , : , : , : , : , : , : , :  |
36 | modus ponens | 52, 53 | , ⊢  |
37 | instantiation | 54, 149, 104, 122, 92, 123 | ⊢  |
| : , : , : , : , : , : , : , : , : , : , :  |
38 | generalization | 55 | , ⊢  |
39 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
40 | instantiation | 133 | ⊢  |
| : , :  |
41 | instantiation | 133 | ⊢  |
| : , :  |
42 | instantiation | 79, 126, 127 | , ⊢  |
| : , :  |
43 | instantiation | 56, 57, 58, 125, 128, 59* | , , , ⊢  |
| : , : , : , : , :  |
44 | instantiation | 79, 60, 99, 61* | , , ⊢  |
| : , :  |
45 | instantiation | 64, 62, 63*, 66* | , ⊢  |
| : , : , :  |
46 | instantiation | 64, 65, 66*, 67* | , ⊢  |
| : , : , :  |
47 | modus ponens | 68, 69 | , ⊢  |
48 | instantiation | 88, 148 | ⊢  |
| : , :  |
49 | instantiation | 103, 104 | ⊢  |
| : , : , : , : , : , : , :  |
50 | generalization | 70 | , ⊢  |
51 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
52 | instantiation | 71, 104, 92 | ⊢  |
| : , : , : , : , : , :  |
53 | generalization | 73 | , ⊢  |
54 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
55 | instantiation | 72, 73, 74 | , , ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
57 | instantiation | 109, 111, 75, 76 | ⊢  |
| : , : , :  |
58 | instantiation | 110, 111, 75, 76, 114, 77, 78 | , ⊢  |
| : , : , : , :  |
59 | instantiation | 79, 125, 128 | , ⊢  |
| : , :  |
60 | instantiation | 154, 136, 80 | , ⊢  |
| : , : , :  |
61 | instantiation | 81, 82, 83 | , , ⊢  |
| : , : , :  |
62 | modus ponens | 84, 85 | , ⊢  |
63 | instantiation | 88, 148 | ⊢  |
| : , :  |
64 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
65 | modus ponens | 86, 87 | , ⊢  |
66 | instantiation | 88, 148 | ⊢  |
| : , :  |
67 | instantiation | 88, 148 | ⊢  |
| : , :  |
68 | instantiation | 103, 104 | ⊢  |
| : , : , : , : , : , : , :  |
69 | generalization | 89 | , ⊢  |
70 | instantiation | 106, 149, 153, 122, 124, 123, 90, 127, 128 | , , ⊢  |
| : , : , : , : , : , :  |
71 | theorem | | ⊢  |
| proveit.linear_algebra.addition.summation_closure |
72 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
73 | instantiation | 91, 92, 95, 93 | , , ⊢  |
| : , : , : , :  |
74 | instantiation | 94, 95, 149, 122, 123, 113, 115, 116 | , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
75 | instantiation | 133 | ⊢  |
| : , :  |
76 | instantiation | 96, 131 | ⊢  |
| :  |
77 | instantiation | 97, 98, 115 | ⊢  |
| : , : , :  |
78 | instantiation | 97, 98, 116 | ⊢  |
| : , : , :  |
79 | axiom | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
80 | instantiation | 129, 135, 139 | , ⊢  |
| : , :  |
81 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
82 | instantiation | 100, 122, 153, 149, 123, 120, 126, 127, 99 | , , ⊢  |
| : , : , : , : , : , :  |
83 | instantiation | 100, 153, 122, 120, 101, 123, 126, 127, 125, 128 | , , ⊢  |
| : , : , : , : , : , :  |
84 | instantiation | 103, 104 | ⊢  |
| : , : , : , : , : , : , :  |
85 | generalization | 102 | , ⊢  |
86 | instantiation | 103, 104 | ⊢  |
| : , : , : , : , : , : , :  |
87 | generalization | 105 | , ⊢  |
88 | theorem | | ⊢  |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
89 | instantiation | 106, 122, 153, 123, 107, 124, 126, 125, 127, 128 | , , ⊢  |
| : , : , : , : , : , :  |
90 | instantiation | 154, 136, 108 | , ⊢  |
| : , : , :  |
91 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
92 | instantiation | 109, 111, 112, 113 | ⊢  |
| : , : , :  |
93 | instantiation | 110, 111, 112, 113, 114, 115, 116 | , ⊢  |
| : , : , : , :  |
94 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
95 | instantiation | 129, 139, 137 | ⊢  |
| : , :  |
96 | theorem | | ⊢  |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
97 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
98 | instantiation | 117, 131, 118 | ⊢  |
| : , : , :  |
99 | instantiation | 119, 125, 128 | , ⊢  |
| : , :  |
100 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
101 | instantiation | 133 | ⊢  |
| : , :  |
102 | instantiation | 121, 122, 153, 149, 123, 120, 126, 127, 125, 128 | , , ⊢  |
| : , : , : , : , : , : , :  |
103 | theorem | | ⊢  |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
104 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
105 | instantiation | 121, 122, 149, 153, 123, 124, 125, 126, 127, 128 | , , ⊢  |
| : , : , : , : , : , : , :  |
106 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
107 | instantiation | 133 | ⊢  |
| : , :  |
108 | instantiation | 129, 135, 134 | , ⊢  |
| : , :  |
109 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
110 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
111 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
112 | instantiation | 133 | ⊢  |
| : , :  |
113 | instantiation | 130, 131 | ⊢  |
| :  |
114 | instantiation | 133 | ⊢  |
| : , :  |
115 | assumption | | ⊢  |
116 | assumption | | ⊢  |
117 | theorem | | ⊢  |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
118 | instantiation | 132, 136 | ⊢  |
| : , :  |
119 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
120 | instantiation | 133 | ⊢  |
| : , :  |
121 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
122 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
123 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
124 | instantiation | 133 | ⊢  |
| : , :  |
125 | instantiation | 154, 136, 134 | ⊢  |
| : , : , :  |
126 | instantiation | 154, 136, 135 | ⊢  |
| : , : , :  |
127 | instantiation | 154, 136, 139 | ⊢  |
| : , : , :  |
128 | instantiation | 154, 136, 137 | ⊢  |
| : , : , :  |
129 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_real_closure_bin |
130 | theorem | | ⊢  |
| proveit.linear_algebra.real_vec_set_is_vec_space |
131 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
132 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
133 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
134 | assumption | | ⊢  |
135 | assumption | | ⊢  |
136 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
137 | instantiation | 138, 139, 140 | ⊢  |
| : , :  |
138 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
139 | instantiation | 154, 142, 141 | ⊢  |
| : , : , :  |
140 | instantiation | 154, 142, 143 | ⊢  |
| : , : , :  |
141 | instantiation | 154, 145, 144 | ⊢  |
| : , : , :  |
142 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
143 | instantiation | 154, 145, 146 | ⊢  |
| : , : , :  |
144 | instantiation | 154, 147, 148 | ⊢  |
| : , : , :  |
145 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
146 | instantiation | 154, 155, 149 | ⊢  |
| : , : , :  |
147 | instantiation | 150, 151, 152 | ⊢  |
| : , :  |
148 | assumption | | ⊢  |
149 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
150 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.int_interval_within_int |
151 | instantiation | 154, 155, 153 | ⊢  |
| : , : , :  |
152 | instantiation | 154, 155, 156 | ⊢  |
| : , : , :  |
153 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
154 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
155 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
156 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |