logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Add(i, one)
sub_expr3 = TensorProd(x, y)
sub_expr4 = Interval(two, four)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(gamma, i, beta, sub_expr2), sub_expr3), domain = sub_expr4), ScalarMult(Mult(gamma, beta), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(i, sub_expr2), sub_expr3), domain = sub_expr4)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right) = \left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 12
operand: 7
4Operationoperator: 23
operands: 6
5ExprTuple7
6ExprTuple8, 9
7Lambdaparameter: 45
body: 10
8Operationoperator: 32
operands: 11
9Operationoperator: 12
operand: 15
10Conditionalvalue: 14
condition: 21
11ExprTuple27, 28
12Literal
13ExprTuple15
14Operationoperator: 23
operands: 16
15Lambdaparameter: 45
body: 18
16ExprTuple19, 30
17ExprTuple45
18Conditionalvalue: 20
condition: 21
19Operationoperator: 32
operands: 22
20Operationoperator: 23
operands: 24
21Operationoperator: 25
operands: 26
22ExprTuple27, 45, 28, 38
23Literal
24ExprTuple29, 30
25Literal
26ExprTuple45, 31
27Variable
28Variable
29Operationoperator: 32
operands: 33
30Operationoperator: 34
operands: 35
31Operationoperator: 36
operands: 37
32Literal
33ExprTuple45, 38
34Literal
35ExprTuple39, 40
36Literal
37ExprTuple41, 42
38Operationoperator: 43
operands: 44
39Variable
40Variable
41Literal
42Literal
43Literal
44ExprTuple45, 46
45Variable
46Literal