logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(i, one)
sub_expr2 = TensorProd(x, y)
sub_expr3 = InSet(i, Interval(two, four))
expr = Equals(Lambda(i, Conditional(ScalarMult(ScalarMult(gamma, i), ScalarMult(beta, ScalarMult(sub_expr1, sub_expr2))), sub_expr3)), Lambda(i, Conditional(ScalarMult(Mult(gamma, i, beta, sub_expr1), sub_expr2), sub_expr3))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[i \mapsto \left\{\left(\gamma \cdot i\right) \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] =  \\ \left[i \mapsto \left\{\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Lambdaparameter: 38
body: 5
4Lambdaparameter: 38
body: 7
5Conditionalvalue: 8
condition: 10
6ExprTuple38
7Conditionalvalue: 9
condition: 10
8Operationoperator: 30
operands: 11
9Operationoperator: 30
operands: 12
10Operationoperator: 13
operands: 14
11ExprTuple15, 16
12ExprTuple17, 33
13Literal
14ExprTuple38, 18
15Operationoperator: 30
operands: 19
16Operationoperator: 30
operands: 20
17Operationoperator: 21
operands: 22
18Operationoperator: 23
operands: 24
19ExprTuple26, 38
20ExprTuple27, 25
21Literal
22ExprTuple26, 38, 27, 32
23Literal
24ExprTuple28, 29
25Operationoperator: 30
operands: 31
26Variable
27Variable
28Literal
29Literal
30Literal
31ExprTuple32, 33
32Operationoperator: 34
operands: 35
33Operationoperator: 36
operands: 37
34Literal
35ExprTuple38, 39
36Literal
37ExprTuple40, 41
38Variable
39Literal
40Variable
41Variable