logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6, 7, 8, 9, ,  ⊢  
  : , : , : , : , : , :
1theorem  ⊢  
 proveit.numbers.multiplication.association
2reference28  ⊢  
3reference32  ⊢  
4axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
5instantiation10  ⊢  
  : , :
6theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
7instantiation33, 12, 11,  ⊢  
  : , : , :
8instantiation33, 12, 18  ⊢  
  : , : , :
9instantiation33, 12, 13  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
11instantiation14, 15, 16,  ⊢  
  : , :
12theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
13instantiation17, 18, 19  ⊢  
  : , :
14theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
15assumption  ⊢  
16assumption  ⊢  
17theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
18instantiation33, 21, 20  ⊢  
  : , : , :
19instantiation33, 21, 22  ⊢  
  : , : , :
20instantiation33, 24, 23  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
22instantiation33, 24, 25  ⊢  
  : , : , :
23instantiation33, 26, 27  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
25instantiation33, 34, 28  ⊢  
  : , : , :
26instantiation29, 30, 31  ⊢  
  : , :
27assumption  ⊢  
28theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
29theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
30instantiation33, 34, 32  ⊢  
  : , : , :
31instantiation33, 34, 35  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
35theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4