logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Add(i, one)
sub_expr3 = Interval(two, four)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(gamma, ScalarMult(i, ScalarMult(beta, ScalarMult(sub_expr2, TensorProd(x, y))))), domain = sub_expr3), ScalarMult(Mult(gamma, beta), TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(i, sub_expr2), y), domain = sub_expr3))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\gamma \cdot \left(i \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right)\right)\right)\right) = \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} \left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot y\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 16
operand: 7
4Operationoperator: 35
operands: 6
5ExprTuple7
6ExprTuple8, 9
7Lambdaparameter: 51
body: 10
8Operationoperator: 37
operands: 11
9Operationoperator: 45
operands: 12
10Conditionalvalue: 13
condition: 26
11ExprTuple18, 31
12ExprTuple49, 14
13Operationoperator: 35
operands: 15
14Operationoperator: 16
operand: 20
15ExprTuple18, 19
16Literal
17ExprTuple20
18Variable
19Operationoperator: 35
operands: 21
20Lambdaparameter: 51
body: 23
21ExprTuple51, 24
22ExprTuple51
23Conditionalvalue: 25
condition: 26
24Operationoperator: 35
operands: 27
25Operationoperator: 35
operands: 28
26Operationoperator: 29
operands: 30
27ExprTuple31, 32
28ExprTuple33, 50
29Literal
30ExprTuple51, 34
31Variable
32Operationoperator: 35
operands: 36
33Operationoperator: 37
operands: 38
34Operationoperator: 39
operands: 40
35Literal
36ExprTuple42, 41
37Literal
38ExprTuple51, 42
39Literal
40ExprTuple43, 44
41Operationoperator: 45
operands: 46
42Operationoperator: 47
operands: 48
43Literal
44Literal
45Literal
46ExprTuple49, 50
47Literal
48ExprTuple51, 52
49Variable
50Variable
51Variable
52Literal