| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢  |
| : , : , :  |
1 | reference | 14 | ⊢  |
2 | instantiation | 14, 4, 5 | , ⊢  |
| : , : , :  |
3 | instantiation | 6, 7 | , , , ⊢  |
| : , :  |
4 | instantiation | 14, 8, 9 | , ⊢  |
| : , : , :  |
5 | instantiation | 26, 10, 18*, 11* | , ⊢  |
| : , : , :  |
6 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
7 | modus ponens | 12, 13 | , , , ⊢  |
8 | instantiation | 14, 15, 16 | , ⊢  |
| : , : , :  |
9 | instantiation | 26, 17, 29*, 18* | , ⊢  |
| : , : , :  |
10 | modus ponens | 19, 20 | , ⊢  |
11 | instantiation | 39, 88 | ⊢  |
| : , :  |
12 | instantiation | 21, 48, 43, 52 | , ⊢  |
| : , : , : , : , : , : , : , :  |
13 | modus ponens | 22, 23 | , ⊢  |
14 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
15 | instantiation | 26, 24, 25*, 28* | , ⊢  |
| : , : , :  |
16 | instantiation | 26, 27, 28*, 29* | , ⊢  |
| : , : , :  |
17 | modus ponens | 30, 31 | , ⊢  |
18 | instantiation | 39, 88 | ⊢  |
| : , :  |
19 | instantiation | 47, 48 | ⊢  |
| : , : , : , : , : , : , :  |
20 | generalization | 32 | , ⊢  |
21 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
22 | instantiation | 33, 48, 43 | ⊢  |
| : , : , : , : , : , :  |
23 | generalization | 34 | , ⊢  |
24 | modus ponens | 35, 36 | , ⊢  |
25 | instantiation | 39, 88 | ⊢  |
| : , :  |
26 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
27 | modus ponens | 37, 38 | , ⊢  |
28 | instantiation | 39, 88 | ⊢  |
| : , :  |
29 | instantiation | 39, 88 | ⊢  |
| : , :  |
30 | instantiation | 47, 48 | ⊢  |
| : , : , : , : , : , : , :  |
31 | generalization | 40 | , ⊢  |
32 | instantiation | 50, 89, 93, 63, 65, 64, 41, 68, 69 | , , ⊢  |
| : , : , : , : , : , :  |
33 | theorem | | ⊢  |
| proveit.linear_algebra.addition.summation_closure |
34 | instantiation | 42, 43, 44, 45 | , , ⊢  |
| : , : , : , :  |
35 | instantiation | 47, 48 | ⊢  |
| : , : , : , : , : , : , :  |
36 | generalization | 46 | , ⊢  |
37 | instantiation | 47, 48 | ⊢  |
| : , : , : , : , : , : , :  |
38 | generalization | 49 | , ⊢  |
39 | theorem | | ⊢  |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
40 | instantiation | 50, 63, 93, 64, 51, 65, 67, 66, 68, 69 | , , ⊢  |
| : , : , : , : , : , :  |
41 | instantiation | 94, 76, 52 | , ⊢  |
| : , : , :  |
42 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
43 | instantiation | 53, 55, 56, 57 | ⊢  |
| : , : , :  |
44 | instantiation | 70, 79, 77 | ⊢  |
| : , :  |
45 | instantiation | 54, 55, 56, 57, 58, 59, 60 | , ⊢  |
| : , : , : , :  |
46 | instantiation | 62, 63, 93, 89, 64, 61, 67, 68, 66, 69 | , , ⊢  |
| : , : , : , : , : , : , :  |
47 | theorem | | ⊢  |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
48 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
49 | instantiation | 62, 63, 89, 93, 64, 65, 66, 67, 68, 69 | , , ⊢  |
| : , : , : , : , : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
51 | instantiation | 73 | ⊢  |
| : , :  |
52 | instantiation | 70, 75, 74 | , ⊢  |
| : , :  |
53 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
54 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
55 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
56 | instantiation | 73 | ⊢  |
| : , :  |
57 | instantiation | 71, 72 | ⊢  |
| :  |
58 | instantiation | 73 | ⊢  |
| : , :  |
59 | assumption | | ⊢  |
60 | assumption | | ⊢  |
61 | instantiation | 73 | ⊢  |
| : , :  |
62 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
63 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
64 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
65 | instantiation | 73 | ⊢  |
| : , :  |
66 | instantiation | 94, 76, 74 | ⊢  |
| : , : , :  |
67 | instantiation | 94, 76, 75 | ⊢  |
| : , : , :  |
68 | instantiation | 94, 76, 79 | ⊢  |
| : , : , :  |
69 | instantiation | 94, 76, 77 | ⊢  |
| : , : , :  |
70 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_real_closure_bin |
71 | theorem | | ⊢  |
| proveit.linear_algebra.real_vec_set_is_vec_space |
72 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
73 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
74 | assumption | | ⊢  |
75 | assumption | | ⊢  |
76 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
77 | instantiation | 78, 79, 80 | ⊢  |
| : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
79 | instantiation | 94, 82, 81 | ⊢  |
| : , : , :  |
80 | instantiation | 94, 82, 83 | ⊢  |
| : , : , :  |
81 | instantiation | 94, 85, 84 | ⊢  |
| : , : , :  |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
83 | instantiation | 94, 85, 86 | ⊢  |
| : , : , :  |
84 | instantiation | 94, 87, 88 | ⊢  |
| : , : , :  |
85 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
86 | instantiation | 94, 95, 89 | ⊢  |
| : , : , :  |
87 | instantiation | 90, 91, 92 | ⊢  |
| : , :  |
88 | assumption | | ⊢  |
89 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
90 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.int_interval_within_int |
91 | instantiation | 94, 95, 93 | ⊢  |
| : , : , :  |
92 | instantiation | 94, 95, 96 | ⊢  |
| : , : , :  |
93 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
94 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
95 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
96 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |