logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Add(i, one)
sub_expr3 = TensorProd(x, y)
sub_expr4 = Interval(two, four)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(ScalarMult(gamma, i), ScalarMult(beta, ScalarMult(sub_expr2, sub_expr3))), domain = sub_expr4), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(gamma, i, beta, sub_expr2), sub_expr3), domain = sub_expr4))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\left(\gamma \cdot i\right) \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right)\right)\right) = \left(\sum_{i=2}^{4} \left(\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operand: 8
4Operationoperator: 6
operand: 9
5ExprTuple8
6Literal
7ExprTuple9
8Lambdaparameter: 43
body: 10
9Lambdaparameter: 43
body: 12
10Conditionalvalue: 13
condition: 15
11ExprTuple43
12Conditionalvalue: 14
condition: 15
13Operationoperator: 35
operands: 16
14Operationoperator: 35
operands: 17
15Operationoperator: 18
operands: 19
16ExprTuple20, 21
17ExprTuple22, 38
18Literal
19ExprTuple43, 23
20Operationoperator: 35
operands: 24
21Operationoperator: 35
operands: 25
22Operationoperator: 26
operands: 27
23Operationoperator: 28
operands: 29
24ExprTuple31, 43
25ExprTuple32, 30
26Literal
27ExprTuple31, 43, 32, 37
28Literal
29ExprTuple33, 34
30Operationoperator: 35
operands: 36
31Variable
32Variable
33Literal
34Literal
35Literal
36ExprTuple37, 38
37Operationoperator: 39
operands: 40
38Operationoperator: 41
operands: 42
39Literal
40ExprTuple43, 44
41Literal
42ExprTuple45, 46
43Variable
44Literal
45Variable
46Variable