| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , ⊢  |
| : , : , :  |
1 | reference | 4 | ⊢  |
2 | instantiation | 4, 5, 6 | , ⊢  |
| : , : , :  |
3 | instantiation | 11, 7, 14*, 8* | , ⊢  |
| : , : , :  |
4 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
5 | instantiation | 11, 9, 10*, 13* | , ⊢  |
| : , : , :  |
6 | instantiation | 11, 12, 13*, 14* | , ⊢  |
| : , : , :  |
7 | modus ponens | 15, 16 | , ⊢  |
8 | instantiation | 21, 53 | ⊢  |
| : , :  |
9 | modus ponens | 17, 18 | , ⊢  |
10 | instantiation | 21, 53 | ⊢  |
| : , :  |
11 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
12 | modus ponens | 19, 20 | , ⊢  |
13 | instantiation | 21, 53 | ⊢  |
| : , :  |
14 | instantiation | 21, 53 | ⊢  |
| : , :  |
15 | instantiation | 24, 25 | ⊢  |
| : , : , : , : , : , : , :  |
16 | generalization | 22 | , ⊢  |
17 | instantiation | 24, 25 | ⊢  |
| : , : , : , : , : , : , :  |
18 | generalization | 23 | , ⊢  |
19 | instantiation | 24, 25 | ⊢  |
| : , : , : , : , : , : , :  |
20 | generalization | 26 | , ⊢  |
21 | theorem | | ⊢  |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
22 | instantiation | 27, 31, 58, 32, 28, 33, 35, 34, 36, 37 | , , ⊢  |
| : , : , : , : , : , :  |
23 | instantiation | 30, 31, 58, 54, 32, 29, 35, 36, 34, 37 | , , ⊢  |
| : , : , : , : , : , : , :  |
24 | theorem | | ⊢  |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
25 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
26 | instantiation | 30, 31, 54, 58, 32, 33, 34, 35, 36, 37 | , , ⊢  |
| : , : , : , : , : , : , :  |
27 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
28 | instantiation | 38 | ⊢  |
| : , :  |
29 | instantiation | 38 | ⊢  |
| : , :  |
30 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
31 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
32 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
33 | instantiation | 38 | ⊢  |
| : , :  |
34 | instantiation | 59, 41, 39 | ⊢  |
| : , : , :  |
35 | instantiation | 59, 41, 40 | ⊢  |
| : , : , :  |
36 | instantiation | 59, 41, 44 | ⊢  |
| : , : , :  |
37 | instantiation | 59, 41, 42 | ⊢  |
| : , : , :  |
38 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
39 | assumption | | ⊢  |
40 | assumption | | ⊢  |
41 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
42 | instantiation | 43, 44, 45 | ⊢  |
| : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
44 | instantiation | 59, 47, 46 | ⊢  |
| : , : , :  |
45 | instantiation | 59, 47, 48 | ⊢  |
| : , : , :  |
46 | instantiation | 59, 50, 49 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
48 | instantiation | 59, 50, 51 | ⊢  |
| : , : , :  |
49 | instantiation | 59, 52, 53 | ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
51 | instantiation | 59, 60, 54 | ⊢  |
| : , : , :  |
52 | instantiation | 55, 56, 57 | ⊢  |
| : , :  |
53 | assumption | | ⊢  |
54 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
55 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.int_interval_within_int |
56 | instantiation | 59, 60, 58 | ⊢  |
| : , : , :  |
57 | instantiation | 59, 60, 61 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
59 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
60 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
61 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |