| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , ⊢  |
| | : , : , :  |
| 1 | reference | 4 | ⊢  |
| 2 | instantiation | 4, 5, 6 | , ⊢  |
| | : , : , :  |
| 3 | instantiation | 11, 7, 14*, 8* | , ⊢  |
| | : , : , :  |
| 4 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 5 | instantiation | 11, 9, 10*, 13* | , ⊢  |
| | : , : , :  |
| 6 | instantiation | 11, 12, 13*, 14* | , ⊢  |
| | : , : , :  |
| 7 | modus ponens | 15, 16 | , ⊢  |
| 8 | instantiation | 21, 53 | ⊢  |
| | : , :  |
| 9 | modus ponens | 17, 18 | , ⊢  |
| 10 | instantiation | 21, 53 | ⊢  |
| | : , :  |
| 11 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 12 | modus ponens | 19, 20 | , ⊢  |
| 13 | instantiation | 21, 53 | ⊢  |
| | : , :  |
| 14 | instantiation | 21, 53 | ⊢  |
| | : , :  |
| 15 | instantiation | 24, 25 | ⊢  |
| | : , : , : , : , : , : , :  |
| 16 | generalization | 22 | , ⊢  |
| 17 | instantiation | 24, 25 | ⊢  |
| | : , : , : , : , : , : , :  |
| 18 | generalization | 23 | , ⊢  |
| 19 | instantiation | 24, 25 | ⊢  |
| | : , : , : , : , : , : , :  |
| 20 | generalization | 26 | , ⊢  |
| 21 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 22 | instantiation | 27, 31, 58, 32, 28, 33, 35, 34, 36, 37 | , , ⊢  |
| | : , : , : , : , : , :  |
| 23 | instantiation | 30, 31, 58, 54, 32, 29, 35, 36, 34, 37 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 24 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 26 | instantiation | 30, 31, 54, 58, 32, 33, 34, 35, 36, 37 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 28 | instantiation | 38 | ⊢  |
| | : , :  |
| 29 | instantiation | 38 | ⊢  |
| | : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 31 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 32 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 33 | instantiation | 38 | ⊢  |
| | : , :  |
| 34 | instantiation | 59, 41, 39 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 59, 41, 40 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 59, 41, 44 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 59, 41, 42 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 39 | assumption | | ⊢  |
| 40 | assumption | | ⊢  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 42 | instantiation | 43, 44, 45 | ⊢  |
| | : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 44 | instantiation | 59, 47, 46 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 59, 47, 48 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 59, 50, 49 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 48 | instantiation | 59, 50, 51 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 59, 52, 53 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 51 | instantiation | 59, 60, 54 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 55, 56, 57 | ⊢  |
| | : , :  |
| 53 | assumption | | ⊢  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 56 | instantiation | 59, 60, 58 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 59, 60, 61 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 59 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |