logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Mult(gamma, beta)
sub_expr3 = Interval(two, four)
sub_expr4 = Mult(i, Add(i, one))
expr = Equals(ScalarMult(sub_expr2, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr4, TensorProd(x, y)), domain = sub_expr3)), ScalarMult(sub_expr2, TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr4, y), domain = sub_expr3))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right)\right) = \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} \left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot y\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 30
operands: 5
4Operationoperator: 30
operands: 6
5ExprTuple8, 7
6ExprTuple8, 9
7Operationoperator: 18
operand: 13
8Operationoperator: 38
operands: 11
9Operationoperator: 28
operands: 12
10ExprTuple13
11ExprTuple14, 15
12ExprTuple34, 16
13Lambdaparameter: 47
body: 17
14Variable
15Variable
16Operationoperator: 18
operand: 21
17Conditionalvalue: 20
condition: 27
18Literal
19ExprTuple21
20Operationoperator: 30
operands: 22
21Lambdaparameter: 47
body: 24
22ExprTuple35, 25
23ExprTuple47
24Conditionalvalue: 26
condition: 27
25Operationoperator: 28
operands: 29
26Operationoperator: 30
operands: 31
27Operationoperator: 32
operands: 33
28Literal
29ExprTuple34, 36
30Literal
31ExprTuple35, 36
32Literal
33ExprTuple47, 37
34Variable
35Operationoperator: 38
operands: 39
36Variable
37Operationoperator: 40
operands: 41
38Literal
39ExprTuple47, 42
40Literal
41ExprTuple43, 44
42Operationoperator: 45
operands: 46
43Literal
44Literal
45Literal
46ExprTuple47, 48
47Variable
48Literal