\forall_{K}~\left[\forall_{\alpha \in K}~\left[\forall_{i, k \in \mathbb{N}}~\left[\begin{array}{l}\forall_{U_{1}, U_{2}, \ldots, U_{i}, V, W_{1}, W_{2}, \ldots, W_{k} \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\\
\left[\begin{array}{l}\forall_{\left(a_{1} \in U_{1}\right), \left(a_{2} \in U_{2}\right), \ldots, \left(a_{i} \in U_{i}\right), b \in V,\left(c_{1} \in W_{1}\right), \left(c_{2} \in W_{2}\right), \ldots, \left(c_{k} \in W_{k}\right)}~\\
\left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} \left(\alpha \cdot b\right){\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) \\ = \left(\alpha \cdot \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} b{\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right)\right) \end{array} \end{array}\right)\end{array}\right]\end{array}\right]\right]\right]