| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , ⊢ |
| : , : , : |
1 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
2 | instantiation | 6, 4, 5*, 8* | , ⊢ |
| : , : , : |
3 | instantiation | 6, 7, 8*, 9* | , ⊢ |
| : , : , : |
4 | modus ponens | 10, 11 | , ⊢ |
5 | instantiation | 14, 43 | ⊢ |
| : , : |
6 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
7 | modus ponens | 12, 13 | , ⊢ |
8 | instantiation | 14, 43 | ⊢ |
| : , : |
9 | instantiation | 14, 43 | ⊢ |
| : , : |
10 | instantiation | 16, 17 | ⊢ |
| : , : , : , : , : , : , : |
11 | generalization | 15 | , ⊢ |
12 | instantiation | 16, 17 | ⊢ |
| : , : , : , : , : , : , : |
13 | generalization | 18 | , ⊢ |
14 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
15 | instantiation | 20, 21, 48, 44, 22, 19, 25, 26, 24, 27 | , , ⊢ |
| : , : , : , : , : , : , : |
16 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
18 | instantiation | 20, 21, 44, 48, 22, 23, 24, 25, 26, 27 | , , ⊢ |
| : , : , : , : , : , : , : |
19 | instantiation | 28 | ⊢ |
| : , : |
20 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
21 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
22 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
23 | instantiation | 28 | ⊢ |
| : , : |
24 | instantiation | 49, 31, 29 | ⊢ |
| : , : , : |
25 | instantiation | 49, 31, 30 | ⊢ |
| : , : , : |
26 | instantiation | 49, 31, 34 | ⊢ |
| : , : , : |
27 | instantiation | 49, 31, 32 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
29 | assumption | | ⊢ |
30 | assumption | | ⊢ |
31 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
32 | instantiation | 33, 34, 35 | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
34 | instantiation | 49, 37, 36 | ⊢ |
| : , : , : |
35 | instantiation | 49, 37, 38 | ⊢ |
| : , : , : |
36 | instantiation | 49, 40, 39 | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
38 | instantiation | 49, 40, 41 | ⊢ |
| : , : , : |
39 | instantiation | 49, 42, 43 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
41 | instantiation | 49, 50, 44 | ⊢ |
| : , : , : |
42 | instantiation | 45, 46, 47 | ⊢ |
| : , : |
43 | assumption | | ⊢ |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
46 | instantiation | 49, 50, 48 | ⊢ |
| : , : , : |
47 | instantiation | 49, 50, 51 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
49 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |