| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3*, 4* | , , , ⊢  |
| | : , : , :  |
| 1 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 2 | modus ponens | 5, 6 | , , , ⊢  |
| 3 | instantiation | 7, 74 | ⊢  |
| | : , :  |
| 4 | instantiation | 7, 74 | ⊢  |
| | : , :  |
| 5 | instantiation | 8, 9 | ⊢  |
| | : , : , : , : , : , : , :  |
| 6 | generalization | 10 | , , , ⊢  |
| 7 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 8 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 9 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 10 | instantiation | 35, 11, 12 | , , , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 13, 79, 14, 15, 16, 17 | , , , , ⊢  |
| | : , : , : , :  |
| 12 | instantiation | 19, 20, 21, 23, 44, 18* | , , , , ⊢  |
| | : , : , : , : , :  |
| 13 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 14 | instantiation | 58 | ⊢  |
| | : , :  |
| 15 | instantiation | 58 | ⊢  |
| | : , :  |
| 16 | instantiation | 33, 50, 51 | , ⊢  |
| | : , :  |
| 17 | instantiation | 19, 20, 21, 56, 57, 22* | , , , ⊢  |
| | : , : , : , : , :  |
| 18 | instantiation | 33, 23, 44, 24* | , , ⊢  |
| | : , :  |
| 19 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 20 | instantiation | 25, 27, 28, 29 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 26, 27, 28, 29, 30, 31, 32 | , ⊢  |
| | : , : , : , :  |
| 22 | instantiation | 33, 56, 57 | , ⊢  |
| | : , :  |
| 23 | instantiation | 80, 62, 34 | , ⊢  |
| | : , : , :  |
| 24 | instantiation | 35, 36, 37 | , , ⊢  |
| | : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 26 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 28 | instantiation | 58 | ⊢  |
| | : , :  |
| 29 | instantiation | 38, 53 | ⊢  |
| | :  |
| 30 | instantiation | 58 | ⊢  |
| | : , :  |
| 31 | instantiation | 40, 41, 39 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 40, 41, 42 | ⊢  |
| | : , : , :  |
| 33 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 34 | instantiation | 43, 59, 65 | , ⊢  |
| | : , :  |
| 35 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 36 | instantiation | 45, 46, 79, 75, 49, 47, 50, 51, 44 | , , ⊢  |
| | : , : , : , : , : , :  |
| 37 | instantiation | 45, 79, 46, 47, 48, 49, 50, 51, 56, 57 | , , ⊢  |
| | : , : , : , : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 39 | assumption | | ⊢  |
| 40 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 41 | instantiation | 52, 53, 54 | ⊢  |
| | : , : , :  |
| 42 | assumption | | ⊢  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 44 | instantiation | 55, 56, 57 | , ⊢  |
| | : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 46 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 47 | instantiation | 58 | ⊢  |
| | : , :  |
| 48 | instantiation | 58 | ⊢  |
| | : , :  |
| 49 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 50 | instantiation | 80, 62, 59 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 80, 62, 65 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 54 | instantiation | 60, 62 | ⊢  |
| | : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 56 | instantiation | 80, 62, 61 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 80, 62, 63 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 59 | assumption | | ⊢  |
| 60 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 61 | assumption | | ⊢  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 63 | instantiation | 64, 65, 66 | ⊢  |
| | : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 65 | instantiation | 80, 68, 67 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 80, 68, 69 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 80, 71, 70 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 69 | instantiation | 80, 71, 72 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 80, 73, 74 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 72 | instantiation | 80, 81, 75 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 76, 77, 78 | ⊢  |
| | : , :  |
| 74 | assumption | | ⊢  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 77 | instantiation | 80, 81, 79 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 80, 81, 82 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 80 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 82 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |