| step type | requirements | statement |
0 | instantiation | 1, 2, 3*, 4* | , , , ⊢ |
| : , : , : |
1 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
2 | modus ponens | 5, 6 | , , , ⊢ |
3 | instantiation | 7, 74 | ⊢ |
| : , : |
4 | instantiation | 7, 74 | ⊢ |
| : , : |
5 | instantiation | 8, 9 | ⊢ |
| : , : , : , : , : , : , : |
6 | generalization | 10 | , , , ⊢ |
7 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
8 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
10 | instantiation | 35, 11, 12 | , , , , ⊢ |
| : , : , : |
11 | instantiation | 13, 79, 14, 15, 16, 17 | , , , , ⊢ |
| : , : , : , : |
12 | instantiation | 19, 20, 21, 23, 44, 18* | , , , , ⊢ |
| : , : , : , : , : |
13 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
14 | instantiation | 58 | ⊢ |
| : , : |
15 | instantiation | 58 | ⊢ |
| : , : |
16 | instantiation | 33, 50, 51 | , ⊢ |
| : , : |
17 | instantiation | 19, 20, 21, 56, 57, 22* | , , , ⊢ |
| : , : , : , : , : |
18 | instantiation | 33, 23, 44, 24* | , , ⊢ |
| : , : |
19 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
20 | instantiation | 25, 27, 28, 29 | ⊢ |
| : , : , : |
21 | instantiation | 26, 27, 28, 29, 30, 31, 32 | , ⊢ |
| : , : , : , : |
22 | instantiation | 33, 56, 57 | , ⊢ |
| : , : |
23 | instantiation | 80, 62, 34 | , ⊢ |
| : , : , : |
24 | instantiation | 35, 36, 37 | , , ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
26 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
28 | instantiation | 58 | ⊢ |
| : , : |
29 | instantiation | 38, 53 | ⊢ |
| : |
30 | instantiation | 58 | ⊢ |
| : , : |
31 | instantiation | 40, 41, 39 | ⊢ |
| : , : , : |
32 | instantiation | 40, 41, 42 | ⊢ |
| : , : , : |
33 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
34 | instantiation | 43, 59, 65 | , ⊢ |
| : , : |
35 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
36 | instantiation | 45, 46, 79, 75, 49, 47, 50, 51, 44 | , , ⊢ |
| : , : , : , : , : , : |
37 | instantiation | 45, 79, 46, 47, 48, 49, 50, 51, 56, 57 | , , ⊢ |
| : , : , : , : , : , : |
38 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
39 | assumption | | ⊢ |
40 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
41 | instantiation | 52, 53, 54 | ⊢ |
| : , : , : |
42 | assumption | | ⊢ |
43 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
44 | instantiation | 55, 56, 57 | , ⊢ |
| : , : |
45 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
46 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
47 | instantiation | 58 | ⊢ |
| : , : |
48 | instantiation | 58 | ⊢ |
| : , : |
49 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
50 | instantiation | 80, 62, 59 | ⊢ |
| : , : , : |
51 | instantiation | 80, 62, 65 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
54 | instantiation | 60, 62 | ⊢ |
| : , : |
55 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
56 | instantiation | 80, 62, 61 | ⊢ |
| : , : , : |
57 | instantiation | 80, 62, 63 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
59 | assumption | | ⊢ |
60 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
61 | assumption | | ⊢ |
62 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
63 | instantiation | 64, 65, 66 | ⊢ |
| : , : |
64 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
65 | instantiation | 80, 68, 67 | ⊢ |
| : , : , : |
66 | instantiation | 80, 68, 69 | ⊢ |
| : , : , : |
67 | instantiation | 80, 71, 70 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
69 | instantiation | 80, 71, 72 | ⊢ |
| : , : , : |
70 | instantiation | 80, 73, 74 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
72 | instantiation | 80, 81, 75 | ⊢ |
| : , : , : |
73 | instantiation | 76, 77, 78 | ⊢ |
| : , : |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
77 | instantiation | 80, 81, 79 | ⊢ |
| : , : , : |
78 | instantiation | 80, 81, 82 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
80 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |