| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , ⊢ |
| : , : , : |
1 | reference | 8 | ⊢ |
2 | instantiation | 8, 4, 5 | , ⊢ |
| : , : , : |
3 | instantiation | 17, 6, 12*, 7* | , ⊢ |
| : , : , : |
4 | instantiation | 8, 9, 10 | , ⊢ |
| : , : , : |
5 | instantiation | 17, 11, 20*, 12* | , ⊢ |
| : , : , : |
6 | modus ponens | 13, 14 | , ⊢ |
7 | instantiation | 28, 63 | ⊢ |
| : , : |
8 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
9 | instantiation | 17, 15, 16*, 19* | , ⊢ |
| : , : , : |
10 | instantiation | 17, 18, 19*, 20* | , ⊢ |
| : , : , : |
11 | modus ponens | 21, 22 | , ⊢ |
12 | instantiation | 28, 63 | ⊢ |
| : , : |
13 | instantiation | 32, 33 | ⊢ |
| : , : , : , : , : , : , : |
14 | generalization | 23 | , ⊢ |
15 | modus ponens | 24, 25 | , ⊢ |
16 | instantiation | 28, 63 | ⊢ |
| : , : |
17 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
18 | modus ponens | 26, 27 | , ⊢ |
19 | instantiation | 28, 63 | ⊢ |
| : , : |
20 | instantiation | 28, 63 | ⊢ |
| : , : |
21 | instantiation | 32, 33 | ⊢ |
| : , : , : , : , : , : , : |
22 | generalization | 29 | , ⊢ |
23 | instantiation | 35, 64, 68, 40, 42, 41, 30, 45, 46 | , , ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 32, 33 | ⊢ |
| : , : , : , : , : , : , : |
25 | generalization | 31 | , ⊢ |
26 | instantiation | 32, 33 | ⊢ |
| : , : , : , : , : , : , : |
27 | generalization | 34 | , ⊢ |
28 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
29 | instantiation | 35, 40, 68, 41, 36, 42, 44, 43, 45, 46 | , , ⊢ |
| : , : , : , : , : , : |
30 | instantiation | 69, 51, 37 | , ⊢ |
| : , : , : |
31 | instantiation | 39, 40, 68, 64, 41, 38, 44, 45, 43, 46 | , , ⊢ |
| : , : , : , : , : , : , : |
32 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
34 | instantiation | 39, 40, 64, 68, 41, 42, 43, 44, 45, 46 | , , ⊢ |
| : , : , : , : , : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
36 | instantiation | 48 | ⊢ |
| : , : |
37 | instantiation | 47, 50, 49 | , ⊢ |
| : , : |
38 | instantiation | 48 | ⊢ |
| : , : |
39 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
40 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
41 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
42 | instantiation | 48 | ⊢ |
| : , : |
43 | instantiation | 69, 51, 49 | ⊢ |
| : , : , : |
44 | instantiation | 69, 51, 50 | ⊢ |
| : , : , : |
45 | instantiation | 69, 51, 54 | ⊢ |
| : , : , : |
46 | instantiation | 69, 51, 52 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
49 | assumption | | ⊢ |
50 | assumption | | ⊢ |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
52 | instantiation | 53, 54, 55 | ⊢ |
| : , : |
53 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
54 | instantiation | 69, 57, 56 | ⊢ |
| : , : , : |
55 | instantiation | 69, 57, 58 | ⊢ |
| : , : , : |
56 | instantiation | 69, 60, 59 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
58 | instantiation | 69, 60, 61 | ⊢ |
| : , : , : |
59 | instantiation | 69, 62, 63 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
61 | instantiation | 69, 70, 64 | ⊢ |
| : , : , : |
62 | instantiation | 65, 66, 67 | ⊢ |
| : , : |
63 | assumption | | ⊢ |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
66 | instantiation | 69, 70, 68 | ⊢ |
| : , : , : |
67 | instantiation | 69, 70, 71 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
69 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
70 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |