| step type | requirements | statement |
0 | modus ponens | 1, 2 | , , , ⊢ |
1 | instantiation | 3, 4 | ⊢ |
| : , : , : , : , : , : , : |
2 | generalization | 5 | , , , ⊢ |
3 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
5 | instantiation | 30, 6, 7 | , , , , ⊢ |
| : , : , : |
6 | instantiation | 8, 74, 9, 10, 11, 12 | , , , , ⊢ |
| : , : , : , : |
7 | instantiation | 14, 15, 16, 18, 39, 13* | , , , , ⊢ |
| : , : , : , : , : |
8 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
9 | instantiation | 53 | ⊢ |
| : , : |
10 | instantiation | 53 | ⊢ |
| : , : |
11 | instantiation | 28, 45, 46 | , ⊢ |
| : , : |
12 | instantiation | 14, 15, 16, 51, 52, 17* | , , , ⊢ |
| : , : , : , : , : |
13 | instantiation | 28, 18, 39, 19* | , , ⊢ |
| : , : |
14 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
15 | instantiation | 20, 22, 23, 24 | ⊢ |
| : , : , : |
16 | instantiation | 21, 22, 23, 24, 25, 26, 27 | , ⊢ |
| : , : , : , : |
17 | instantiation | 28, 51, 52 | , ⊢ |
| : , : |
18 | instantiation | 75, 57, 29 | , ⊢ |
| : , : , : |
19 | instantiation | 30, 31, 32 | , , ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
21 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
23 | instantiation | 53 | ⊢ |
| : , : |
24 | instantiation | 33, 48 | ⊢ |
| : |
25 | instantiation | 53 | ⊢ |
| : , : |
26 | instantiation | 35, 36, 34 | ⊢ |
| : , : , : |
27 | instantiation | 35, 36, 37 | ⊢ |
| : , : , : |
28 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
29 | instantiation | 38, 54, 60 | , ⊢ |
| : , : |
30 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
31 | instantiation | 40, 41, 74, 70, 44, 42, 45, 46, 39 | , , ⊢ |
| : , : , : , : , : , : |
32 | instantiation | 40, 74, 41, 42, 43, 44, 45, 46, 51, 52 | , , ⊢ |
| : , : , : , : , : , : |
33 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
34 | assumption | | ⊢ |
35 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
36 | instantiation | 47, 48, 49 | ⊢ |
| : , : , : |
37 | assumption | | ⊢ |
38 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
39 | instantiation | 50, 51, 52 | , ⊢ |
| : , : |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
41 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
42 | instantiation | 53 | ⊢ |
| : , : |
43 | instantiation | 53 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
45 | instantiation | 75, 57, 54 | ⊢ |
| : , : , : |
46 | instantiation | 75, 57, 60 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
49 | instantiation | 55, 57 | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
51 | instantiation | 75, 57, 56 | ⊢ |
| : , : , : |
52 | instantiation | 75, 57, 58 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
54 | assumption | | ⊢ |
55 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
56 | assumption | | ⊢ |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
58 | instantiation | 59, 60, 61 | ⊢ |
| : , : |
59 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
60 | instantiation | 75, 63, 62 | ⊢ |
| : , : , : |
61 | instantiation | 75, 63, 64 | ⊢ |
| : , : , : |
62 | instantiation | 75, 66, 65 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
64 | instantiation | 75, 66, 67 | ⊢ |
| : , : , : |
65 | instantiation | 75, 68, 69 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
67 | instantiation | 75, 76, 70 | ⊢ |
| : , : , : |
68 | instantiation | 71, 72, 73 | ⊢ |
| : , : |
69 | assumption | | ⊢ |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
72 | instantiation | 75, 76, 74 | ⊢ |
| : , : , : |
73 | instantiation | 75, 76, 77 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
75 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |