| | step type | requirements | statement |
| 0 | modus ponens | 1, 2 | , , , ⊢  |
| 1 | instantiation | 3, 4 | ⊢  |
| | : , : , : , : , : , : , :  |
| 2 | generalization | 5 | , , , ⊢  |
| 3 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 5 | instantiation | 30, 6, 7 | , , , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 8, 74, 9, 10, 11, 12 | , , , , ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 14, 15, 16, 18, 39, 13* | , , , , ⊢  |
| | : , : , : , : , :  |
| 8 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 9 | instantiation | 53 | ⊢  |
| | : , :  |
| 10 | instantiation | 53 | ⊢  |
| | : , :  |
| 11 | instantiation | 28, 45, 46 | , ⊢  |
| | : , :  |
| 12 | instantiation | 14, 15, 16, 51, 52, 17* | , , , ⊢  |
| | : , : , : , : , :  |
| 13 | instantiation | 28, 18, 39, 19* | , , ⊢  |
| | : , :  |
| 14 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 15 | instantiation | 20, 22, 23, 24 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 21, 22, 23, 24, 25, 26, 27 | , ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 28, 51, 52 | , ⊢  |
| | : , :  |
| 18 | instantiation | 75, 57, 29 | , ⊢  |
| | : , : , :  |
| 19 | instantiation | 30, 31, 32 | , , ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 21 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 22 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 23 | instantiation | 53 | ⊢  |
| | : , :  |
| 24 | instantiation | 33, 48 | ⊢  |
| | :  |
| 25 | instantiation | 53 | ⊢  |
| | : , :  |
| 26 | instantiation | 35, 36, 34 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 35, 36, 37 | ⊢  |
| | : , : , :  |
| 28 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 29 | instantiation | 38, 54, 60 | , ⊢  |
| | : , :  |
| 30 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 31 | instantiation | 40, 41, 74, 70, 44, 42, 45, 46, 39 | , , ⊢  |
| | : , : , : , : , : , :  |
| 32 | instantiation | 40, 74, 41, 42, 43, 44, 45, 46, 51, 52 | , , ⊢  |
| | : , : , : , : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 34 | assumption | | ⊢  |
| 35 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 36 | instantiation | 47, 48, 49 | ⊢  |
| | : , : , :  |
| 37 | assumption | | ⊢  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 39 | instantiation | 50, 51, 52 | , ⊢  |
| | : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 41 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 42 | instantiation | 53 | ⊢  |
| | : , :  |
| 43 | instantiation | 53 | ⊢  |
| | : , :  |
| 44 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 45 | instantiation | 75, 57, 54 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 75, 57, 60 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 48 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 49 | instantiation | 55, 57 | ⊢  |
| | : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 51 | instantiation | 75, 57, 56 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 75, 57, 58 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 54 | assumption | | ⊢  |
| 55 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 56 | assumption | | ⊢  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 58 | instantiation | 59, 60, 61 | ⊢  |
| | : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 60 | instantiation | 75, 63, 62 | ⊢  |
| | : , : , :  |
| 61 | instantiation | 75, 63, 64 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 75, 66, 65 | ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 64 | instantiation | 75, 66, 67 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 75, 68, 69 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 67 | instantiation | 75, 76, 70 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 71, 72, 73 | ⊢  |
| | : , :  |
| 69 | assumption | | ⊢  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 72 | instantiation | 75, 76, 74 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 75, 76, 77 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 75 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |