| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 20 | ⊢ |
2 | instantiation | 20, 4, 5 | , , , ⊢ |
| : , : , : |
3 | instantiation | 34, 6 | , ⊢ |
| : , : , : |
4 | instantiation | 20, 7, 8 | , ⊢ |
| : , : , : |
5 | instantiation | 10, 9 | , , , ⊢ |
| : , : |
6 | instantiation | 10, 11 | , ⊢ |
| : , : |
7 | instantiation | 20, 12, 13 | , ⊢ |
| : , : , : |
8 | instantiation | 34, 14, 24*, 15* | , ⊢ |
| : , : , : |
9 | modus ponens | 16, 17 | , , , ⊢ |
10 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
11 | modus ponens | 18, 19 | , ⊢ |
12 | instantiation | 20, 21, 22 | , ⊢ |
| : , : , : |
13 | instantiation | 34, 23, 37*, 24* | , ⊢ |
| : , : , : |
14 | modus ponens | 25, 26 | , ⊢ |
15 | instantiation | 49, 99 | ⊢ |
| : , : |
16 | instantiation | 27, 59, 53, 63 | , ⊢ |
| : , : , : , : , : , : , : , : |
17 | modus ponens | 28, 29 | , ⊢ |
18 | instantiation | 30, 100, 59, 74, 53, 75 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
19 | generalization | 31 | , ⊢ |
20 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
21 | instantiation | 34, 32, 33*, 36* | , ⊢ |
| : , : , : |
22 | instantiation | 34, 35, 36*, 37* | , ⊢ |
| : , : , : |
23 | modus ponens | 38, 39 | , ⊢ |
24 | instantiation | 49, 99 | ⊢ |
| : , : |
25 | instantiation | 58, 59 | ⊢ |
| : , : , : , : , : , : , : |
26 | generalization | 40 | , ⊢ |
27 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
28 | instantiation | 41, 59, 53 | ⊢ |
| : , : , : , : , : , : |
29 | generalization | 43 | , ⊢ |
30 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
31 | instantiation | 42, 43, 44 | , , ⊢ |
| : , : , : |
32 | modus ponens | 45, 46 | , ⊢ |
33 | instantiation | 49, 99 | ⊢ |
| : , : |
34 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
35 | modus ponens | 47, 48 | , ⊢ |
36 | instantiation | 49, 99 | ⊢ |
| : , : |
37 | instantiation | 49, 99 | ⊢ |
| : , : |
38 | instantiation | 58, 59 | ⊢ |
| : , : , : , : , : , : , : |
39 | generalization | 50 | , ⊢ |
40 | instantiation | 61, 100, 104, 74, 76, 75, 51, 79, 80 | , , ⊢ |
| : , : , : , : , : , : |
41 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
42 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
43 | instantiation | 52, 53, 56, 54 | , , ⊢ |
| : , : , : , : |
44 | instantiation | 55, 56, 100, 74, 75, 68, 70, 71 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
45 | instantiation | 58, 59 | ⊢ |
| : , : , : , : , : , : , : |
46 | generalization | 57 | , ⊢ |
47 | instantiation | 58, 59 | ⊢ |
| : , : , : , : , : , : , : |
48 | generalization | 60 | , ⊢ |
49 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
50 | instantiation | 61, 74, 104, 75, 62, 76, 78, 77, 79, 80 | , , ⊢ |
| : , : , : , : , : , : |
51 | instantiation | 105, 87, 63 | , ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
53 | instantiation | 64, 66, 67, 68 | ⊢ |
| : , : , : |
54 | instantiation | 65, 66, 67, 68, 69, 70, 71 | , ⊢ |
| : , : , : , : |
55 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
56 | instantiation | 81, 90, 88 | ⊢ |
| : , : |
57 | instantiation | 73, 74, 104, 100, 75, 72, 78, 79, 77, 80 | , , ⊢ |
| : , : , : , : , : , : , : |
58 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
60 | instantiation | 73, 74, 100, 104, 75, 76, 77, 78, 79, 80 | , , ⊢ |
| : , : , : , : , : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
62 | instantiation | 84 | ⊢ |
| : , : |
63 | instantiation | 81, 86, 85 | , ⊢ |
| : , : |
64 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
65 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
67 | instantiation | 84 | ⊢ |
| : , : |
68 | instantiation | 82, 83 | ⊢ |
| : |
69 | instantiation | 84 | ⊢ |
| : , : |
70 | assumption | | ⊢ |
71 | assumption | | ⊢ |
72 | instantiation | 84 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
74 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
75 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
76 | instantiation | 84 | ⊢ |
| : , : |
77 | instantiation | 105, 87, 85 | ⊢ |
| : , : , : |
78 | instantiation | 105, 87, 86 | ⊢ |
| : , : , : |
79 | instantiation | 105, 87, 90 | ⊢ |
| : , : , : |
80 | instantiation | 105, 87, 88 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
82 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
85 | assumption | | ⊢ |
86 | assumption | | ⊢ |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
88 | instantiation | 89, 90, 91 | ⊢ |
| : , : |
89 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
90 | instantiation | 105, 93, 92 | ⊢ |
| : , : , : |
91 | instantiation | 105, 93, 94 | ⊢ |
| : , : , : |
92 | instantiation | 105, 96, 95 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 105, 96, 97 | ⊢ |
| : , : , : |
95 | instantiation | 105, 98, 99 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
97 | instantiation | 105, 106, 100 | ⊢ |
| : , : , : |
98 | instantiation | 101, 102, 103 | ⊢ |
| : , : |
99 | assumption | | ⊢ |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
101 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
102 | instantiation | 105, 106, 104 | ⊢ |
| : , : , : |
103 | instantiation | 105, 106, 107 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
105 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
106 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |