| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 72 | ⊢ |
2 | instantiation | 55, 4, 5*, 6* | , , , ⊢ |
| : , : , : |
3 | instantiation | 72, 7, 8 | , , , ⊢ |
| : , : , : |
4 | modus ponens | 9, 10 | , , , ⊢ |
5 | instantiation | 79, 139 | ⊢ |
| : , : |
6 | instantiation | 79, 139 | ⊢ |
| : , : |
7 | instantiation | 72, 11, 12 | , , , ⊢ |
| : , : , : |
8 | instantiation | 55, 13 | , ⊢ |
| : , : , : |
9 | instantiation | 94, 95 | ⊢ |
| : , : , : , : , : , : , : |
10 | generalization | 14 | , , , ⊢ |
11 | instantiation | 72, 15, 16 | , ⊢ |
| : , : , : |
12 | instantiation | 18, 17 | , , , ⊢ |
| : , : |
13 | instantiation | 18, 19 | , ⊢ |
| : , : |
14 | instantiation | 72, 20, 21 | , , , , ⊢ |
| : , : , : |
15 | instantiation | 72, 22, 23 | , ⊢ |
| : , : , : |
16 | instantiation | 55, 24, 39*, 25* | , ⊢ |
| : , : , : |
17 | modus ponens | 26, 27 | , , , ⊢ |
18 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
19 | modus ponens | 28, 29 | , ⊢ |
20 | instantiation | 30, 144, 31, 32, 33, 34 | , , , , ⊢ |
| : , : , : , : |
21 | instantiation | 47, 48, 49, 51, 90, 35* | , , , , ⊢ |
| : , : , : , : , : |
22 | instantiation | 72, 36, 37 | , ⊢ |
| : , : , : |
23 | instantiation | 55, 38, 58*, 39* | , ⊢ |
| : , : , : |
24 | modus ponens | 40, 41 | , ⊢ |
25 | instantiation | 79, 139 | ⊢ |
| : , : |
26 | instantiation | 42, 95, 83, 99 | , ⊢ |
| : , : , : , : , : , : , : , : |
27 | modus ponens | 43, 44 | , ⊢ |
28 | instantiation | 45, 140, 95, 113, 83, 114 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
29 | generalization | 46 | , ⊢ |
30 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
31 | instantiation | 124 | ⊢ |
| : , : |
32 | instantiation | 124 | ⊢ |
| : , : |
33 | instantiation | 70, 117, 118 | , ⊢ |
| : , : |
34 | instantiation | 47, 48, 49, 116, 119, 50* | , , , ⊢ |
| : , : , : , : , : |
35 | instantiation | 70, 51, 90, 52* | , , ⊢ |
| : , : |
36 | instantiation | 55, 53, 54*, 57* | , ⊢ |
| : , : , : |
37 | instantiation | 55, 56, 57*, 58* | , ⊢ |
| : , : , : |
38 | modus ponens | 59, 60 | , ⊢ |
39 | instantiation | 79, 139 | ⊢ |
| : , : |
40 | instantiation | 94, 95 | ⊢ |
| : , : , : , : , : , : , : |
41 | generalization | 61 | , ⊢ |
42 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
43 | instantiation | 62, 95, 83 | ⊢ |
| : , : , : , : , : , : |
44 | generalization | 64 | , ⊢ |
45 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
46 | instantiation | 63, 64, 65 | , , ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
48 | instantiation | 100, 102, 66, 67 | ⊢ |
| : , : , : |
49 | instantiation | 101, 102, 66, 67, 105, 68, 69 | , ⊢ |
| : , : , : , : |
50 | instantiation | 70, 116, 119 | , ⊢ |
| : , : |
51 | instantiation | 145, 127, 71 | , ⊢ |
| : , : , : |
52 | instantiation | 72, 73, 74 | , , ⊢ |
| : , : , : |
53 | modus ponens | 75, 76 | , ⊢ |
54 | instantiation | 79, 139 | ⊢ |
| : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
56 | modus ponens | 77, 78 | , ⊢ |
57 | instantiation | 79, 139 | ⊢ |
| : , : |
58 | instantiation | 79, 139 | ⊢ |
| : , : |
59 | instantiation | 94, 95 | ⊢ |
| : , : , : , : , : , : , : |
60 | generalization | 80 | , ⊢ |
61 | instantiation | 97, 140, 144, 113, 115, 114, 81, 118, 119 | , , ⊢ |
| : , : , : , : , : , : |
62 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
63 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
64 | instantiation | 82, 83, 86, 84 | , , ⊢ |
| : , : , : , : |
65 | instantiation | 85, 86, 140, 113, 114, 104, 106, 107 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
66 | instantiation | 124 | ⊢ |
| : , : |
67 | instantiation | 87, 122 | ⊢ |
| : |
68 | instantiation | 88, 89, 106 | ⊢ |
| : , : , : |
69 | instantiation | 88, 89, 107 | ⊢ |
| : , : , : |
70 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
71 | instantiation | 120, 126, 130 | , ⊢ |
| : , : |
72 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
73 | instantiation | 91, 113, 144, 140, 114, 111, 117, 118, 90 | , , ⊢ |
| : , : , : , : , : , : |
74 | instantiation | 91, 144, 113, 111, 92, 114, 117, 118, 116, 119 | , , ⊢ |
| : , : , : , : , : , : |
75 | instantiation | 94, 95 | ⊢ |
| : , : , : , : , : , : , : |
76 | generalization | 93 | , ⊢ |
77 | instantiation | 94, 95 | ⊢ |
| : , : , : , : , : , : , : |
78 | generalization | 96 | , ⊢ |
79 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
80 | instantiation | 97, 113, 144, 114, 98, 115, 117, 116, 118, 119 | , , ⊢ |
| : , : , : , : , : , : |
81 | instantiation | 145, 127, 99 | , ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
83 | instantiation | 100, 102, 103, 104 | ⊢ |
| : , : , : |
84 | instantiation | 101, 102, 103, 104, 105, 106, 107 | , ⊢ |
| : , : , : , : |
85 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
86 | instantiation | 120, 130, 128 | ⊢ |
| : , : |
87 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
88 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
89 | instantiation | 108, 122, 109 | ⊢ |
| : , : , : |
90 | instantiation | 110, 116, 119 | , ⊢ |
| : , : |
91 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
92 | instantiation | 124 | ⊢ |
| : , : |
93 | instantiation | 112, 113, 144, 140, 114, 111, 117, 118, 116, 119 | , , ⊢ |
| : , : , : , : , : , : , : |
94 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
96 | instantiation | 112, 113, 140, 144, 114, 115, 116, 117, 118, 119 | , , ⊢ |
| : , : , : , : , : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
98 | instantiation | 124 | ⊢ |
| : , : |
99 | instantiation | 120, 126, 125 | , ⊢ |
| : , : |
100 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
101 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
103 | instantiation | 124 | ⊢ |
| : , : |
104 | instantiation | 121, 122 | ⊢ |
| : |
105 | instantiation | 124 | ⊢ |
| : , : |
106 | assumption | | ⊢ |
107 | assumption | | ⊢ |
108 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
109 | instantiation | 123, 127 | ⊢ |
| : , : |
110 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
111 | instantiation | 124 | ⊢ |
| : , : |
112 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
113 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
114 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
115 | instantiation | 124 | ⊢ |
| : , : |
116 | instantiation | 145, 127, 125 | ⊢ |
| : , : , : |
117 | instantiation | 145, 127, 126 | ⊢ |
| : , : , : |
118 | instantiation | 145, 127, 130 | ⊢ |
| : , : , : |
119 | instantiation | 145, 127, 128 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
121 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
122 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
123 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
124 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
125 | assumption | | ⊢ |
126 | assumption | | ⊢ |
127 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
128 | instantiation | 129, 130, 131 | ⊢ |
| : , : |
129 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
130 | instantiation | 145, 133, 132 | ⊢ |
| : , : , : |
131 | instantiation | 145, 133, 134 | ⊢ |
| : , : , : |
132 | instantiation | 145, 136, 135 | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
134 | instantiation | 145, 136, 137 | ⊢ |
| : , : , : |
135 | instantiation | 145, 138, 139 | ⊢ |
| : , : , : |
136 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
137 | instantiation | 145, 146, 140 | ⊢ |
| : , : , : |
138 | instantiation | 141, 142, 143 | ⊢ |
| : , : |
139 | assumption | | ⊢ |
140 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
141 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
142 | instantiation | 145, 146, 144 | ⊢ |
| : , : , : |
143 | instantiation | 145, 146, 147 | ⊢ |
| : , : , : |
144 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
145 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
146 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
147 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |