| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , ⊢  |
| | : , : , :  |
| 1 | reference | 72 | ⊢  |
| 2 | instantiation | 55, 4, 5*, 6* | , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 72, 7, 8 | , , , ⊢  |
| | : , : , :  |
| 4 | modus ponens | 9, 10 | , , , ⊢  |
| 5 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 6 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 7 | instantiation | 72, 11, 12 | , , , ⊢  |
| | : , : , :  |
| 8 | instantiation | 55, 13 | , ⊢  |
| | : , : , :  |
| 9 | instantiation | 94, 95 | ⊢  |
| | : , : , : , : , : , : , :  |
| 10 | generalization | 14 | , , , ⊢  |
| 11 | instantiation | 72, 15, 16 | , ⊢  |
| | : , : , :  |
| 12 | instantiation | 18, 17 | , , , ⊢  |
| | : , :  |
| 13 | instantiation | 18, 19 | , ⊢  |
| | : , :  |
| 14 | instantiation | 72, 20, 21 | , , , , ⊢  |
| | : , : , :  |
| 15 | instantiation | 72, 22, 23 | , ⊢  |
| | : , : , :  |
| 16 | instantiation | 55, 24, 39*, 25* | , ⊢  |
| | : , : , :  |
| 17 | modus ponens | 26, 27 | , , , ⊢  |
| 18 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 19 | modus ponens | 28, 29 | , ⊢  |
| 20 | instantiation | 30, 144, 31, 32, 33, 34 | , , , , ⊢  |
| | : , : , : , :  |
| 21 | instantiation | 47, 48, 49, 51, 90, 35* | , , , , ⊢  |
| | : , : , : , : , :  |
| 22 | instantiation | 72, 36, 37 | , ⊢  |
| | : , : , :  |
| 23 | instantiation | 55, 38, 58*, 39* | , ⊢  |
| | : , : , :  |
| 24 | modus ponens | 40, 41 | , ⊢  |
| 25 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 26 | instantiation | 42, 95, 83, 99 | , ⊢  |
| | : , : , : , : , : , : , : , :  |
| 27 | modus ponens | 43, 44 | , ⊢  |
| 28 | instantiation | 45, 140, 95, 113, 83, 114 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 29 | generalization | 46 | , ⊢  |
| 30 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 31 | instantiation | 124 | ⊢  |
| | : , :  |
| 32 | instantiation | 124 | ⊢  |
| | : , :  |
| 33 | instantiation | 70, 117, 118 | , ⊢  |
| | : , :  |
| 34 | instantiation | 47, 48, 49, 116, 119, 50* | , , , ⊢  |
| | : , : , : , : , :  |
| 35 | instantiation | 70, 51, 90, 52* | , , ⊢  |
| | : , :  |
| 36 | instantiation | 55, 53, 54*, 57* | , ⊢  |
| | : , : , :  |
| 37 | instantiation | 55, 56, 57*, 58* | , ⊢  |
| | : , : , :  |
| 38 | modus ponens | 59, 60 | , ⊢  |
| 39 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 40 | instantiation | 94, 95 | ⊢  |
| | : , : , : , : , : , : , :  |
| 41 | generalization | 61 | , ⊢  |
| 42 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
| 43 | instantiation | 62, 95, 83 | ⊢  |
| | : , : , : , : , : , :  |
| 44 | generalization | 64 | , ⊢  |
| 45 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 46 | instantiation | 63, 64, 65 | , , ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 48 | instantiation | 100, 102, 66, 67 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 101, 102, 66, 67, 105, 68, 69 | , ⊢  |
| | : , : , : , :  |
| 50 | instantiation | 70, 116, 119 | , ⊢  |
| | : , :  |
| 51 | instantiation | 145, 127, 71 | , ⊢  |
| | : , : , :  |
| 52 | instantiation | 72, 73, 74 | , , ⊢  |
| | : , : , :  |
| 53 | modus ponens | 75, 76 | , ⊢  |
| 54 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 55 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 56 | modus ponens | 77, 78 | , ⊢  |
| 57 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 58 | instantiation | 79, 139 | ⊢  |
| | : , :  |
| 59 | instantiation | 94, 95 | ⊢  |
| | : , : , : , : , : , : , :  |
| 60 | generalization | 80 | , ⊢  |
| 61 | instantiation | 97, 140, 144, 113, 115, 114, 81, 118, 119 | , , ⊢  |
| | : , : , : , : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 63 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 64 | instantiation | 82, 83, 86, 84 | , , ⊢  |
| | : , : , : , :  |
| 65 | instantiation | 85, 86, 140, 113, 114, 104, 106, 107 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 66 | instantiation | 124 | ⊢  |
| | : , :  |
| 67 | instantiation | 87, 122 | ⊢  |
| | :  |
| 68 | instantiation | 88, 89, 106 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 88, 89, 107 | ⊢  |
| | : , : , :  |
| 70 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 71 | instantiation | 120, 126, 130 | , ⊢  |
| | : , :  |
| 72 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 73 | instantiation | 91, 113, 144, 140, 114, 111, 117, 118, 90 | , , ⊢  |
| | : , : , : , : , : , :  |
| 74 | instantiation | 91, 144, 113, 111, 92, 114, 117, 118, 116, 119 | , , ⊢  |
| | : , : , : , : , : , :  |
| 75 | instantiation | 94, 95 | ⊢  |
| | : , : , : , : , : , : , :  |
| 76 | generalization | 93 | , ⊢  |
| 77 | instantiation | 94, 95 | ⊢  |
| | : , : , : , : , : , : , :  |
| 78 | generalization | 96 | , ⊢  |
| 79 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 80 | instantiation | 97, 113, 144, 114, 98, 115, 117, 116, 118, 119 | , , ⊢  |
| | : , : , : , : , : , :  |
| 81 | instantiation | 145, 127, 99 | , ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 83 | instantiation | 100, 102, 103, 104 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 101, 102, 103, 104, 105, 106, 107 | , ⊢  |
| | : , : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 86 | instantiation | 120, 130, 128 | ⊢  |
| | : , :  |
| 87 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 88 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 89 | instantiation | 108, 122, 109 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 110, 116, 119 | , ⊢  |
| | : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 92 | instantiation | 124 | ⊢  |
| | : , :  |
| 93 | instantiation | 112, 113, 144, 140, 114, 111, 117, 118, 116, 119 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 95 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 96 | instantiation | 112, 113, 140, 144, 114, 115, 116, 117, 118, 119 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 97 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 98 | instantiation | 124 | ⊢  |
| | : , :  |
| 99 | instantiation | 120, 126, 125 | , ⊢  |
| | : , :  |
| 100 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 101 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 102 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 103 | instantiation | 124 | ⊢  |
| | : , :  |
| 104 | instantiation | 121, 122 | ⊢  |
| | :  |
| 105 | instantiation | 124 | ⊢  |
| | : , :  |
| 106 | assumption | | ⊢  |
| 107 | assumption | | ⊢  |
| 108 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 109 | instantiation | 123, 127 | ⊢  |
| | : , :  |
| 110 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 111 | instantiation | 124 | ⊢  |
| | : , :  |
| 112 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 113 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 114 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 115 | instantiation | 124 | ⊢  |
| | : , :  |
| 116 | instantiation | 145, 127, 125 | ⊢  |
| | : , : , :  |
| 117 | instantiation | 145, 127, 126 | ⊢  |
| | : , : , :  |
| 118 | instantiation | 145, 127, 130 | ⊢  |
| | : , : , :  |
| 119 | instantiation | 145, 127, 128 | ⊢  |
| | : , : , :  |
| 120 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 121 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 122 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 123 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 124 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 125 | assumption | | ⊢  |
| 126 | assumption | | ⊢  |
| 127 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 128 | instantiation | 129, 130, 131 | ⊢  |
| | : , :  |
| 129 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 130 | instantiation | 145, 133, 132 | ⊢  |
| | : , : , :  |
| 131 | instantiation | 145, 133, 134 | ⊢  |
| | : , : , :  |
| 132 | instantiation | 145, 136, 135 | ⊢  |
| | : , : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 134 | instantiation | 145, 136, 137 | ⊢  |
| | : , : , :  |
| 135 | instantiation | 145, 138, 139 | ⊢  |
| | : , : , :  |
| 136 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 137 | instantiation | 145, 146, 140 | ⊢  |
| | : , : , :  |
| 138 | instantiation | 141, 142, 143 | ⊢  |
| | : , :  |
| 139 | assumption | | ⊢  |
| 140 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 141 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 142 | instantiation | 145, 146, 144 | ⊢  |
| | : , : , :  |
| 143 | instantiation | 145, 146, 147 | ⊢  |
| | : , : , :  |
| 144 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 145 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 146 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 147 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |