logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Interval, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = ScalarMult(gamma, ScalarMult(i, ScalarMult(beta, ScalarMult(Add(i, one), TensorProd(x, y)))))
expr = Equals(Conditional(sub_expr1, InSet(i, Interval(two, four))), sub_expr1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\gamma \cdot \left(i \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right.. = \left(\gamma \cdot \left(i \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Conditionalvalue: 4
condition: 5
4Operationoperator: 21
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple9, 10
7Literal
8ExprTuple29, 11
9Variable
10Operationoperator: 21
operands: 12
11Operationoperator: 13
operands: 14
12ExprTuple29, 15
13Literal
14ExprTuple16, 17
15Operationoperator: 21
operands: 18
16Literal
17Literal
18ExprTuple19, 20
19Variable
20Operationoperator: 21
operands: 22
21Literal
22ExprTuple23, 24
23Operationoperator: 25
operands: 26
24Operationoperator: 27
operands: 28
25Literal
26ExprTuple29, 30
27Literal
28ExprTuple31, 32
29Variable
30Literal
31Variable
32Variable