logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Mult(gamma, beta)
sub_expr3 = TensorProd(x, y)
sub_expr4 = Interval(two, four)
sub_expr5 = Mult(i, Add(i, one))
expr = Equals(ScalarMult(sub_expr2, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr5, sub_expr3), domain = sub_expr4)), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(sub_expr2, sub_expr5), sub_expr3), domain = sub_expr4)).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right)\right) \\  = \left(\sum_{i=2}^{4} \left(\left(\left(\gamma \cdot \beta\right) \cdot \left(i \cdot \left(i + 1\right)\right)\right) \cdot \left(x {\otimes} y\right)\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 20
operands: 5
4Operationoperator: 9
operand: 8
5ExprTuple27, 7
6ExprTuple8
7Operationoperator: 9
operand: 12
8Lambdaparameter: 45
body: 11
9Literal
10ExprTuple12
11Conditionalvalue: 13
condition: 18
12Lambdaparameter: 45
body: 15
13Operationoperator: 20
operands: 16
14ExprTuple45
15Conditionalvalue: 17
condition: 18
16ExprTuple19, 25
17Operationoperator: 20
operands: 21
18Operationoperator: 22
operands: 23
19Operationoperator: 34
operands: 24
20Literal
21ExprTuple28, 25
22Literal
23ExprTuple45, 26
24ExprTuple27, 28
25Operationoperator: 29
operands: 30
26Operationoperator: 31
operands: 32
27Operationoperator: 34
operands: 33
28Operationoperator: 34
operands: 35
29Literal
30ExprTuple36, 37
31Literal
32ExprTuple38, 39
33ExprTuple40, 41
34Literal
35ExprTuple45, 42
36Variable
37Variable
38Literal
39Literal
40Variable
41Variable
42Operationoperator: 43
operands: 44
43Literal
44ExprTuple45, 46
45Variable
46Literal