Delta-Based Covariance Formulas For Approximate Control Variates

The following lists the formula needed to use ACV to compute vector-valued statistics comprised of means, variances or both. The formulas use the expressions for V,W,B in Monte Carlo Quadrature: Beyond Mean Estimation.

These covariancesdepend on how samples are allocated to the sets Zα,Zα, which we call the sample allocation A. Specifically, A specifies: the number of samples in the sets Zα,Zα,α, denoted by Nα and Nα, respectively; the number of samples in the intersections of pairs of sets, that is Nαβ=|ZαZβ|, Nαβ=|ZαZβ|, Nαβ=|ZαZβ|; and the number of samples in the union of pairs of sets Nαβ=|ZαZβ| and similarly Nαβ, Nαβ.

Mean

Cov[Δα,Δβ]=FαβCov[fα,fβ]RK×K
Fαβ=NαβNαNβNαβNαNβNαβNαNβ+NαβNαNβ
Cov[Q0,Δα]=GαCov[f0,fα]RK×K
Gα=N0αN0NαN0αN0Nα

Variance

Cov[Δα,Δβ]=FαβWαβ+HαβVαβRK2×K2
Hαβ=Nαβ(Nαβ1)NαNβ(Nα1)(Nβ1)Nαβ(Nαβ1)NαNβ(Nα1)(Nβ1)Nαβ(Nαβ1)NαNβ(Nα1)(Nβ1)+Nαβ(Nαβ1)NαNβ(Nα1)(Nβ1)
Cov[Q0,Δα]=JαV0α+GαW0αRK2×K2
Jα=N0α(N0α1)N0Nα(N01)(Nα1)N0α(N0α1)N0Nα(N01)(Nα1)

Mean and Variance

Cov[Δα,Δβ](ZACV)=[Cov[Δαμ,Δβμ]Cov[Δαμ,ΔβΣ]Cov[ΔβΣ,Δαμ]Cov[ΔαΣ,ΔβΣ]]R(K+K2)×(K+K2)
Cov[Q0,Δα](ZACV)=[Cov[Q0μ,Δαμ]Cov[Q0μ,ΔαΣ]Cov[Q0Σ,Δαμ]Cov[Q0Σ,ΔαΣ]]R(K+K2)×(K+K2).
Cov[Δαμ,ΔβΣ]=FαβBαβRK×(K+K2)
Cov[Q0μ,ΔαΣ]=GαB0αRK×(K+K2)

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery