| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 265 | ⊢ |
2 | instantiation | 278, 4 | ⊢ |
| : , : , : |
3 | instantiation | 219, 5 | ⊢ |
| : , : |
4 | instantiation | 6, 199, 7 | ⊢ |
| : , : , : |
5 | instantiation | 8, 9 | ⊢ |
| : , : |
6 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_eq_via_elem_eq |
7 | modus ponens | 10, 11 | ⊢ |
8 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.prob_eq_via_equiv |
9 | modus ponens | 12, 13 | ⊢ |
10 | instantiation | 14, 104, 167, 15, 16, 17, 18, 19, 20 | ⊢ |
| : , : , : , : |
11 | instantiation | 21, 104, 22, 23, 24, 25, 26 | ⊢ |
| : , : , : |
12 | instantiation | 27, 247, 306, 301, 248, 28 | ⊢ |
| : , : , : , : , : , : , : , : |
13 | instantiation | 29, 80, 226, 303, 289, 30, 31, 32, 33, 34, 83, 35, 36, 37, 97, 247, 106, 110, 38, 94* | ⊢ |
| : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.qcircuit_eq |
15 | instantiation | 195, 39, 41, 42 | ⊢ |
| : , : , : , : |
16 | instantiation | 195, 40, 41, 42 | ⊢ |
| : , : , : , : |
17 | instantiation | 195, 43, 63, 47 | ⊢ |
| : , : , : , : |
18 | instantiation | 195, 44, 63, 47 | ⊢ |
| : , : , : , : |
19 | instantiation | 195, 45, 63, 47 | ⊢ |
| : , : , : , : |
20 | instantiation | 195, 46, 63, 47 | ⊢ |
| : , : , : , : |
21 | theorem | | ⊢ |
| proveit.core_expr_types.expr_arrays.varray_eq_via_elem_eq |
22 | instantiation | 262 | ⊢ |
| : , : , : |
23 | instantiation | 262 | ⊢ |
| : , : , : |
24 | instantiation | 219, 48 | ⊢ |
| : , : |
25 | instantiation | 271 | ⊢ |
| : |
26 | instantiation | 271 | ⊢ |
| : |
27 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.circuit_equiv_temporal_sub |
28 | instantiation | 269 | ⊢ |
| : , : |
29 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.input_consolidation |
30 | instantiation | 269 | ⊢ |
| : , : |
31 | instantiation | 49, 50 | ⊢ |
| : , : |
32 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._u_ket_register |
33 | instantiation | 195, 51, 52, 53 | ⊢ |
| : , : , : , : |
34 | instantiation | 219, 54 | ⊢ |
| : , : |
35 | instantiation | 219, 55 | ⊢ |
| : , : |
36 | instantiation | 195, 56, 57, 58 | ⊢ |
| : , : , : , : |
37 | instantiation | 120, 183, 259, 94 | ⊢ |
| : , : , : |
38 | instantiation | 59, 286, 60, 61, 62, 63 | ⊢ |
| : , : |
39 | instantiation | 79, 64, 65, 66, 126, 67, 84, 78, 68* | ⊢ |
| : , : , : , : |
40 | instantiation | 79, 69, 70, 71, 72, 84, 85, 78, 73* | ⊢ |
| : , : , : , : |
41 | instantiation | 219, 74 | ⊢ |
| : , : |
42 | instantiation | 219, 75 | ⊢ |
| : , : |
43 | instantiation | 109, 110 | ⊢ |
| : , : |
44 | instantiation | 79, 80, 76, 242, 226, 84, 78, 134*, 229* | ⊢ |
| : , : , : , : |
45 | instantiation | 79, 80, 77, 242, 226, 84, 78, 134*, 229* | ⊢ |
| : , : , : , : |
46 | instantiation | 79, 80, 81, 82, 83, 84, 85, 134*, 135* | ⊢ |
| : , : , : , : |
47 | instantiation | 219, 86 | ⊢ |
| : , : |
48 | instantiation | 87, 88, 89, 90 | ⊢ |
| : , : , : , : , : |
49 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.left_from_and |
50 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec |
51 | instantiation | 91 | ⊢ |
| : , : , : |
52 | instantiation | 271 | ⊢ |
| : |
53 | instantiation | 219, 92 | ⊢ |
| : , : |
54 | instantiation | 93, 96, 94 | ⊢ |
| : , : , : |
55 | instantiation | 95, 96, 97 | ⊢ |
| : , : , : |
56 | instantiation | 98 | ⊢ |
| : , : |
57 | instantiation | 271 | ⊢ |
| : |
58 | instantiation | 219, 99 | ⊢ |
| : , : |
59 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
60 | instantiation | 262 | ⊢ |
| : , : , : |
61 | instantiation | 271 | ⊢ |
| : |
62 | instantiation | 219, 172 | ⊢ |
| : , : |
63 | instantiation | 271 | ⊢ |
| : |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
65 | instantiation | 153 | ⊢ |
| : , : , : , : , : |
66 | instantiation | 153 | ⊢ |
| : , : , : , : , : |
67 | instantiation | 107, 110, 127 | ⊢ |
| : , : , : |
68 | instantiation | 265, 100, 101 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
70 | instantiation | 161 | ⊢ |
| : , : , : , : , : , : |
71 | instantiation | 161 | ⊢ |
| : , : , : , : , : , : |
72 | instantiation | 161 | ⊢ |
| : , : , : , : , : , : |
73 | instantiation | 265, 102, 129 | ⊢ |
| : , : , : |
74 | instantiation | 238, 306, 301, 247, 226, 248, 218, 260, 264 | ⊢ |
| : , : , : , : , : , : |
75 | instantiation | 103, 104, 105, 110 | ⊢ |
| : , : , : |
76 | instantiation | 269 | ⊢ |
| : , : |
77 | instantiation | 269 | ⊢ |
| : , : |
78 | instantiation | 107, 108, 229 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
81 | instantiation | 269 | ⊢ |
| : , : |
82 | instantiation | 269 | ⊢ |
| : , : |
83 | instantiation | 269 | ⊢ |
| : , : |
84 | instantiation | 107, 106, 134 | ⊢ |
| : , : , : |
85 | instantiation | 107, 108, 135 | ⊢ |
| : , : , : |
86 | instantiation | 109, 110 | ⊢ |
| : , : |
87 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.merge |
88 | instantiation | 117, 111, 112 | ⊢ |
| : |
89 | instantiation | 117, 113, 114 | ⊢ |
| : |
90 | instantiation | 271 | ⊢ |
| : |
91 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3 |
92 | instantiation | 121, 115, 116 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_front |
94 | instantiation | 203, 259 | ⊢ |
| : |
95 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_back |
96 | instantiation | 117, 118, 119 | ⊢ |
| : |
97 | instantiation | 120, 259, 257, 279 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2 |
99 | instantiation | 121, 122, 123 | ⊢ |
| : , : , : |
100 | instantiation | 130, 124, 125, 126, 127, 134, 229 | ⊢ |
| : , : , : , : |
101 | instantiation | 265, 128, 129 | ⊢ |
| : , : , : |
102 | instantiation | 130, 131, 132, 133, 134, 135, 229 | ⊢ |
| : , : , : , : |
103 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.len_of_ranges_with_repeated_indices_from_1 |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
105 | instantiation | 136, 286 | ⊢ |
| : , : |
106 | instantiation | 304, 174, 303 | ⊢ |
| : , : , : |
107 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
108 | instantiation | 304, 174, 289 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
110 | instantiation | 304, 174, 167 | ⊢ |
| : , : , : |
111 | instantiation | 145, 137, 292 | ⊢ |
| : , : |
112 | instantiation | 147, 138 | ⊢ |
| : , : |
113 | instantiation | 145, 139, 140 | ⊢ |
| : , : |
114 | instantiation | 147, 141 | ⊢ |
| : , : |
115 | instantiation | 149, 142 | ⊢ |
| : , : , : |
116 | instantiation | 265, 143, 144 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
118 | instantiation | 145, 293, 146 | ⊢ |
| : , : |
119 | instantiation | 147, 148 | ⊢ |
| : , : |
120 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
121 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
122 | instantiation | 149, 150 | ⊢ |
| : , : , : |
123 | instantiation | 265, 151, 152 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
125 | instantiation | 153 | ⊢ |
| : , : , : , : , : |
126 | instantiation | 153 | ⊢ |
| : , : , : , : , : |
127 | instantiation | 265, 154, 155 | ⊢ |
| : , : , : |
128 | instantiation | 225, 247, 301, 156, 248, 226, 157, 260, 264 | ⊢ |
| : , : , : , : , : , : |
129 | instantiation | 195, 158, 159, 160 | ⊢ |
| : , : , : , : |
130 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
132 | instantiation | 161 | ⊢ |
| : , : , : , : , : , : |
133 | instantiation | 161 | ⊢ |
| : , : , : , : , : , : |
134 | instantiation | 252, 259, 260, 253 | ⊢ |
| : , : , : |
135 | instantiation | 265, 162, 163 | ⊢ |
| : , : , : |
136 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
137 | instantiation | 304, 166, 165 | ⊢ |
| : , : , : |
138 | instantiation | 164, 165 | ⊢ |
| : |
139 | instantiation | 304, 166, 167 | ⊢ |
| : , : , : |
140 | instantiation | 304, 168, 298 | ⊢ |
| : , : , : |
141 | instantiation | 169, 274, 170, 277, 171, 172*, 173* | ⊢ |
| : , : , : |
142 | instantiation | 304, 174, 175 | ⊢ |
| : , : , : |
143 | instantiation | 278, 256 | ⊢ |
| : , : , : |
144 | instantiation | 241, 247, 301, 306, 248, 176, 257, 183, 259, 177* | ⊢ |
| : , : , : , : , : , : |
145 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
146 | instantiation | 287, 178, 233 | ⊢ |
| : , : , : |
147 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
148 | instantiation | 179, 301 | ⊢ |
| : |
149 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_len |
150 | instantiation | 180, 286, 181, 306, 207 | ⊢ |
| : , : |
151 | instantiation | 278, 256 | ⊢ |
| : , : , : |
152 | instantiation | 241, 247, 301, 306, 248, 182, 259, 183, 184* | ⊢ |
| : , : , : , : , : , : |
153 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
154 | instantiation | 225, 247, 301, 248, 226, 249, 260, 264, 250, 259 | ⊢ |
| : , : , : , : , : , : |
155 | instantiation | 185, 301, 247, 226, 248, 260, 264, 259 | ⊢ |
| : , : , : , : , : , : , : , : |
156 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
157 | instantiation | 186 | ⊢ |
| : , : , : , : |
158 | instantiation | 265, 187, 188 | ⊢ |
| : , : , : |
159 | instantiation | 241, 247, 286, 248, 189, 191, 260, 264, 190* | ⊢ |
| : , : , : , : , : , : |
160 | instantiation | 241, 306, 286, 247, 191, 248, 192, 264, 193* | ⊢ |
| : , : , : , : , : , : |
161 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
162 | instantiation | 278, 194 | ⊢ |
| : , : , : |
163 | instantiation | 195, 196, 197, 198 | ⊢ |
| : , : , : , : |
164 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
165 | instantiation | 200, 303, 199 | ⊢ |
| : , : |
166 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
167 | instantiation | 200, 303, 289 | ⊢ |
| : , : |
168 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.neg_int_within_int |
169 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
170 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
171 | instantiation | 201, 202 | ⊢ |
| : , : |
172 | instantiation | 203, 260 | ⊢ |
| : |
173 | instantiation | 219, 204 | ⊢ |
| : , : |
174 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
175 | instantiation | 205, 301, 247, 206, 248, 207, 306, 208 | ⊢ |
| : , : , : , : , : |
176 | instantiation | 269 | ⊢ |
| : , : |
177 | instantiation | 265, 209, 267 | ⊢ |
| : , : , : |
178 | instantiation | 295, 210 | ⊢ |
| : , : |
179 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
180 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure |
181 | instantiation | 262 | ⊢ |
| : , : , : |
182 | instantiation | 269 | ⊢ |
| : , : |
183 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
184 | instantiation | 265, 211, 279 | ⊢ |
| : , : , : |
185 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general_rev |
186 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
187 | instantiation | 213, 306, 286, 212, 260, 264 | ⊢ |
| : , : , : , : , : , : , : |
188 | instantiation | 213, 301, 306, 214, 215, 260, 264 | ⊢ |
| : , : , : , : , : , : , : |
189 | instantiation | 262 | ⊢ |
| : , : , : |
190 | instantiation | 219, 216, 221* | ⊢ |
| : , : |
191 | instantiation | 262 | ⊢ |
| : , : , : |
192 | instantiation | 217, 218, 260 | ⊢ |
| : , : |
193 | instantiation | 219, 220, 221* | ⊢ |
| : , : |
194 | instantiation | 222, 260, 259 | ⊢ |
| : , : |
195 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
196 | instantiation | 225, 247, 301, 248, 226, 223, 260, 264, 224, 259 | ⊢ |
| : , : , : , : , : , : |
197 | instantiation | 225, 301, 306, 226, 227, 260, 264, 245, 250, 259 | ⊢ |
| : , : , : , : , : , : |
198 | instantiation | 265, 228, 229 | ⊢ |
| : , : , : |
199 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
200 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
201 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
202 | instantiation | 230, 289 | ⊢ |
| : |
203 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
204 | instantiation | 231, 260, 264 | ⊢ |
| : , : |
205 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
206 | instantiation | 269 | ⊢ |
| : , : |
207 | instantiation | 287, 232, 233 | ⊢ |
| : , : , : |
208 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
209 | instantiation | 278, 234 | ⊢ |
| : , : , : |
210 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_set_within_int |
211 | instantiation | 278, 235 | ⊢ |
| : , : , : |
212 | instantiation | 262 | ⊢ |
| : , : , : |
213 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
214 | instantiation | 269 | ⊢ |
| : , : |
215 | instantiation | 269 | ⊢ |
| : , : |
216 | instantiation | 238, 247, 286, 306, 248, 239, 259, 260, 236* | ⊢ |
| : , : , : , : , : , : |
217 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
218 | instantiation | 304, 276, 237 | ⊢ |
| : , : , : |
219 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
220 | instantiation | 238, 247, 286, 306, 248, 239, 259, 264, 240* | ⊢ |
| : , : , : , : , : , : |
221 | instantiation | 241, 247, 301, 306, 248, 242, 259, 243* | ⊢ |
| : , : , : , : , : , : |
222 | theorem | | ⊢ |
| proveit.numbers.negation.distribute_neg_through_binary_sum |
223 | instantiation | 269 | ⊢ |
| : , : |
224 | instantiation | 244, 245, 250 | ⊢ |
| : , : |
225 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
226 | instantiation | 269 | ⊢ |
| : , : |
227 | instantiation | 269 | ⊢ |
| : , : |
228 | instantiation | 246, 247, 306, 301, 248, 249, 260, 264, 250, 259, 251 | ⊢ |
| : , : , : , : , : , : , : , : |
229 | instantiation | 252, 259, 264, 253 | ⊢ |
| : , : , : |
230 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
231 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
232 | instantiation | 295, 254 | ⊢ |
| : , : |
233 | instantiation | 255, 256 | ⊢ |
| : , : |
234 | instantiation | 258, 257 | ⊢ |
| : |
235 | instantiation | 258, 259 | ⊢ |
| : |
236 | instantiation | 263, 260 | ⊢ |
| : |
237 | instantiation | 304, 284, 261 | ⊢ |
| : , : , : |
238 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
239 | instantiation | 262 | ⊢ |
| : , : , : |
240 | instantiation | 263, 264 | ⊢ |
| : |
241 | theorem | | ⊢ |
| proveit.numbers.addition.association |
242 | instantiation | 269 | ⊢ |
| : , : |
243 | instantiation | 265, 266, 267 | ⊢ |
| : , : , : |
244 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
245 | instantiation | 304, 276, 268 | ⊢ |
| : , : , : |
246 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general |
247 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
248 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
249 | instantiation | 269 | ⊢ |
| : , : |
250 | instantiation | 304, 276, 270 | ⊢ |
| : , : , : |
251 | instantiation | 271 | ⊢ |
| : |
252 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
253 | instantiation | 271 | ⊢ |
| : |
254 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_set_within_nat |
255 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.fold_singleton |
256 | theorem | | ⊢ |
| proveit.numbers.negation.negated_zero |
257 | instantiation | 304, 276, 272 | ⊢ |
| : , : , : |
258 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
259 | instantiation | 304, 276, 273 | ⊢ |
| : , : , : |
260 | instantiation | 304, 276, 274 | ⊢ |
| : , : , : |
261 | instantiation | 304, 294, 275 | ⊢ |
| : , : , : |
262 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
263 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
264 | instantiation | 304, 276, 277 | ⊢ |
| : , : , : |
265 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
266 | instantiation | 278, 279 | ⊢ |
| : , : , : |
267 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
268 | instantiation | 304, 280, 281 | ⊢ |
| : , : , : |
269 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
270 | instantiation | 304, 284, 282 | ⊢ |
| : , : , : |
271 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
272 | instantiation | 304, 284, 283 | ⊢ |
| : , : , : |
273 | instantiation | 304, 284, 285 | ⊢ |
| : , : , : |
274 | instantiation | 287, 288, 303 | ⊢ |
| : , : , : |
275 | instantiation | 304, 305, 286 | ⊢ |
| : , : , : |
276 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
277 | instantiation | 287, 288, 289 | ⊢ |
| : , : , : |
278 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
279 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
280 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
281 | instantiation | 304, 290, 291 | ⊢ |
| : , : , : |
282 | instantiation | 304, 294, 292 | ⊢ |
| : , : , : |
283 | instantiation | 304, 294, 293 | ⊢ |
| : , : , : |
284 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
285 | instantiation | 304, 294, 300 | ⊢ |
| : , : , : |
286 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
287 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
288 | instantiation | 295, 296 | ⊢ |
| : , : |
289 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
290 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_neg_within_real_neg |
291 | instantiation | 304, 297, 298 | ⊢ |
| : , : , : |
292 | instantiation | 299, 300 | ⊢ |
| : |
293 | instantiation | 304, 305, 301 | ⊢ |
| : , : , : |
294 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
295 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
296 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
297 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.neg_int_within_rational_neg |
298 | instantiation | 302, 303 | ⊢ |
| : |
299 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
300 | instantiation | 304, 305, 306 | ⊢ |
| : , : , : |
301 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
302 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
303 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
304 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
305 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
306 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |