| step type | requirements | statement |
0 | modus ponens | 1, 2 | ⊢ |
1 | instantiation | 3, 58, 105, 4, 5, 6, 7, 8, 9 | ⊢ |
| : , : , : , : |
2 | instantiation | 10, 58, 11, 12, 13, 14, 15 | ⊢ |
| : , : , : |
3 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.qcircuit_eq |
4 | instantiation | 122, 16, 18, 19 | ⊢ |
| : , : , : , : |
5 | instantiation | 122, 17, 18, 19 | ⊢ |
| : , : , : , : |
6 | instantiation | 122, 20, 24, 25 | ⊢ |
| : , : , : , : |
7 | instantiation | 122, 21, 24, 25 | ⊢ |
| : , : , : , : |
8 | instantiation | 122, 22, 24, 25 | ⊢ |
| : , : , : , : |
9 | instantiation | 122, 23, 24, 25 | ⊢ |
| : , : , : , : |
10 | theorem | | ⊢ |
| proveit.core_expr_types.expr_arrays.varray_eq_via_elem_eq |
11 | instantiation | 174 | ⊢ |
| : , : , : |
12 | instantiation | 174 | ⊢ |
| : , : , : |
13 | instantiation | 139, 26 | ⊢ |
| : , : |
14 | instantiation | 184 | ⊢ |
| : |
15 | instantiation | 184 | ⊢ |
| : |
16 | instantiation | 42, 27, 28, 29, 72, 30, 47, 41, 31* | ⊢ |
| : , : , : , : |
17 | instantiation | 42, 32, 33, 34, 35, 47, 48, 41, 36* | ⊢ |
| : , : , : , : |
18 | instantiation | 139, 37 | ⊢ |
| : , : |
19 | instantiation | 139, 38 | ⊢ |
| : , : |
20 | instantiation | 63, 64 | ⊢ |
| : , : |
21 | instantiation | 42, 43, 39, 158, 146, 47, 41, 80*, 149* | ⊢ |
| : , : , : , : |
22 | instantiation | 42, 43, 40, 158, 146, 47, 41, 80*, 149* | ⊢ |
| : , : , : , : |
23 | instantiation | 42, 43, 44, 45, 46, 47, 48, 80*, 81* | ⊢ |
| : , : , : , : |
24 | instantiation | 184 | ⊢ |
| : |
25 | instantiation | 139, 49 | ⊢ |
| : , : |
26 | instantiation | 50, 51, 52, 53 | ⊢ |
| : , : , : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
28 | instantiation | 91 | ⊢ |
| : , : , : , : , : |
29 | instantiation | 91 | ⊢ |
| : , : , : , : , : |
30 | instantiation | 61, 64, 73 | ⊢ |
| : , : , : |
31 | instantiation | 177, 54, 55 | ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
33 | instantiation | 99 | ⊢ |
| : , : , : , : , : , : |
34 | instantiation | 99 | ⊢ |
| : , : , : , : , : , : |
35 | instantiation | 99 | ⊢ |
| : , : , : , : , : , : |
36 | instantiation | 177, 56, 75 | ⊢ |
| : , : , : |
37 | instantiation | 154, 214, 164, 163, 146, 165, 138, 172, 176 | ⊢ |
| : , : , : , : , : , : |
38 | instantiation | 57, 58, 59, 64 | ⊢ |
| : , : , : |
39 | instantiation | 181 | ⊢ |
| : , : |
40 | instantiation | 181 | ⊢ |
| : , : |
41 | instantiation | 61, 62, 149 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
44 | instantiation | 181 | ⊢ |
| : , : |
45 | instantiation | 181 | ⊢ |
| : , : |
46 | instantiation | 181 | ⊢ |
| : , : |
47 | instantiation | 61, 60, 80 | ⊢ |
| : , : , : |
48 | instantiation | 61, 62, 81 | ⊢ |
| : , : , : |
49 | instantiation | 63, 64 | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.merge |
51 | instantiation | 67, 65, 66 | ⊢ |
| : |
52 | instantiation | 67, 68, 69 | ⊢ |
| : |
53 | instantiation | 184 | ⊢ |
| : |
54 | instantiation | 76, 70, 71, 72, 73, 80, 149 | ⊢ |
| : , : , : , : |
55 | instantiation | 177, 74, 75 | ⊢ |
| : , : , : |
56 | instantiation | 76, 77, 78, 79, 80, 81, 149 | ⊢ |
| : , : , : , : |
57 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.len_of_ranges_with_repeated_indices_from_1 |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
59 | instantiation | 82, 196 | ⊢ |
| : , : |
60 | instantiation | 212, 83, 211 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
62 | instantiation | 212, 83, 199 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
64 | instantiation | 212, 83, 105 | ⊢ |
| : , : , : |
65 | instantiation | 86, 84, 202 | ⊢ |
| : , : |
66 | instantiation | 89, 85 | ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
68 | instantiation | 86, 87, 88 | ⊢ |
| : , : |
69 | instantiation | 89, 90 | ⊢ |
| : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
71 | instantiation | 91 | ⊢ |
| : , : , : , : , : |
72 | instantiation | 91 | ⊢ |
| : , : , : , : , : |
73 | instantiation | 177, 92, 93 | ⊢ |
| : , : , : |
74 | instantiation | 145, 163, 164, 94, 165, 146, 95, 172, 176 | ⊢ |
| : , : , : , : , : , : |
75 | instantiation | 122, 96, 97, 98 | ⊢ |
| : , : , : , : |
76 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
78 | instantiation | 99 | ⊢ |
| : , : , : , : , : , : |
79 | instantiation | 99 | ⊢ |
| : , : , : , : , : , : |
80 | instantiation | 169, 170, 172, 171 | ⊢ |
| : , : , : |
81 | instantiation | 177, 100, 101 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
84 | instantiation | 212, 104, 103 | ⊢ |
| : , : , : |
85 | instantiation | 102, 103 | ⊢ |
| : |
86 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
87 | instantiation | 212, 104, 105 | ⊢ |
| : , : , : |
88 | instantiation | 212, 106, 207 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
90 | instantiation | 107, 185, 108, 188, 109, 110*, 111* | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
92 | instantiation | 145, 163, 164, 165, 146, 166, 172, 176, 167, 170 | ⊢ |
| : , : , : , : , : , : |
93 | instantiation | 112, 164, 163, 146, 165, 172, 176, 170 | ⊢ |
| : , : , : , : , : , : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
95 | instantiation | 113 | ⊢ |
| : , : , : , : |
96 | instantiation | 177, 114, 115 | ⊢ |
| : , : , : |
97 | instantiation | 157, 163, 196, 165, 116, 118, 172, 176, 117* | ⊢ |
| : , : , : , : , : , : |
98 | instantiation | 157, 214, 196, 163, 118, 165, 119, 176, 120* | ⊢ |
| : , : , : , : , : , : |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
100 | instantiation | 189, 121 | ⊢ |
| : , : , : |
101 | instantiation | 122, 123, 124, 125 | ⊢ |
| : , : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
103 | instantiation | 127, 211, 126 | ⊢ |
| : , : |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
105 | instantiation | 127, 211, 199 | ⊢ |
| : , : |
106 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.neg_int_within_int |
107 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
108 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
109 | instantiation | 128, 129 | ⊢ |
| : , : |
110 | instantiation | 130, 172 | ⊢ |
| : |
111 | instantiation | 139, 131 | ⊢ |
| : , : |
112 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general_rev |
113 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
114 | instantiation | 133, 214, 196, 132, 172, 176 | ⊢ |
| : , : , : , : , : , : , : |
115 | instantiation | 133, 164, 214, 134, 135, 172, 176 | ⊢ |
| : , : , : , : , : , : , : |
116 | instantiation | 174 | ⊢ |
| : , : , : |
117 | instantiation | 139, 136, 141* | ⊢ |
| : , : |
118 | instantiation | 174 | ⊢ |
| : , : , : |
119 | instantiation | 137, 138, 172 | ⊢ |
| : , : |
120 | instantiation | 139, 140, 141* | ⊢ |
| : , : |
121 | instantiation | 142, 172, 170 | ⊢ |
| : , : |
122 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
123 | instantiation | 145, 163, 164, 165, 146, 143, 172, 176, 144, 170 | ⊢ |
| : , : , : , : , : , : |
124 | instantiation | 145, 164, 214, 146, 147, 172, 176, 161, 167, 170 | ⊢ |
| : , : , : , : , : , : |
125 | instantiation | 177, 148, 149 | ⊢ |
| : , : , : |
126 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
127 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
128 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
129 | instantiation | 150, 199 | ⊢ |
| : |
130 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
131 | instantiation | 151, 172, 176 | ⊢ |
| : , : |
132 | instantiation | 174 | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
134 | instantiation | 181 | ⊢ |
| : , : |
135 | instantiation | 181 | ⊢ |
| : , : |
136 | instantiation | 154, 163, 196, 214, 165, 155, 170, 172, 152* | ⊢ |
| : , : , : , : , : , : |
137 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
138 | instantiation | 212, 187, 153 | ⊢ |
| : , : , : |
139 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
140 | instantiation | 154, 163, 196, 214, 165, 155, 170, 176, 156* | ⊢ |
| : , : , : , : , : , : |
141 | instantiation | 157, 163, 164, 214, 165, 158, 170, 159* | ⊢ |
| : , : , : , : , : , : |
142 | theorem | | ⊢ |
| proveit.numbers.negation.distribute_neg_through_binary_sum |
143 | instantiation | 181 | ⊢ |
| : , : |
144 | instantiation | 160, 161, 167 | ⊢ |
| : , : |
145 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
146 | instantiation | 181 | ⊢ |
| : , : |
147 | instantiation | 181 | ⊢ |
| : , : |
148 | instantiation | 162, 163, 214, 164, 165, 166, 172, 176, 167, 170, 168 | ⊢ |
| : , : , : , : , : , : , : , : |
149 | instantiation | 169, 170, 176, 171 | ⊢ |
| : , : , : |
150 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
151 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
152 | instantiation | 175, 172 | ⊢ |
| : |
153 | instantiation | 212, 194, 173 | ⊢ |
| : , : , : |
154 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
155 | instantiation | 174 | ⊢ |
| : , : , : |
156 | instantiation | 175, 176 | ⊢ |
| : |
157 | theorem | | ⊢ |
| proveit.numbers.addition.association |
158 | instantiation | 181 | ⊢ |
| : , : |
159 | instantiation | 177, 178, 179 | ⊢ |
| : , : , : |
160 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
161 | instantiation | 212, 187, 180 | ⊢ |
| : , : , : |
162 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general |
163 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
164 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
165 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
166 | instantiation | 181 | ⊢ |
| : , : |
167 | instantiation | 212, 187, 182 | ⊢ |
| : , : , : |
168 | instantiation | 184 | ⊢ |
| : |
169 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
170 | instantiation | 212, 187, 183 | ⊢ |
| : , : , : |
171 | instantiation | 184 | ⊢ |
| : |
172 | instantiation | 212, 187, 185 | ⊢ |
| : , : , : |
173 | instantiation | 212, 203, 186 | ⊢ |
| : , : , : |
174 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
175 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
176 | instantiation | 212, 187, 188 | ⊢ |
| : , : , : |
177 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
178 | instantiation | 189, 190 | ⊢ |
| : , : , : |
179 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
180 | instantiation | 212, 191, 192 | ⊢ |
| : , : , : |
181 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
182 | instantiation | 212, 194, 193 | ⊢ |
| : , : , : |
183 | instantiation | 212, 194, 195 | ⊢ |
| : , : , : |
184 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
185 | instantiation | 197, 198, 211 | ⊢ |
| : , : , : |
186 | instantiation | 212, 213, 196 | ⊢ |
| : , : , : |
187 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
188 | instantiation | 197, 198, 199 | ⊢ |
| : , : , : |
189 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
190 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
191 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
192 | instantiation | 212, 200, 201 | ⊢ |
| : , : , : |
193 | instantiation | 212, 203, 202 | ⊢ |
| : , : , : |
194 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
195 | instantiation | 212, 203, 209 | ⊢ |
| : , : , : |
196 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
197 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
198 | instantiation | 204, 205 | ⊢ |
| : , : |
199 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
200 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_neg_within_real_neg |
201 | instantiation | 212, 206, 207 | ⊢ |
| : , : , : |
202 | instantiation | 208, 209 | ⊢ |
| : |
203 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
204 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
205 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
206 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.neg_int_within_rational_neg |
207 | instantiation | 210, 211 | ⊢ |
| : |
208 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
209 | instantiation | 212, 213, 214 | ⊢ |
| : , : , : |
210 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
211 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
212 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
213 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
214 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |