| step type | requirements | statement |
0 | instantiation | 1, 2 | ⊢ |
| : , : |
1 | reference | 52 | ⊢ |
2 | instantiation | 3, 4 | ⊢ |
| : , : |
3 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.prob_eq_via_equiv |
4 | modus ponens | 5, 6 | ⊢ |
5 | instantiation | 7, 94, 133, 130, 96, 8 | ⊢ |
| : , : , : , : , : , : , : , : |
6 | instantiation | 9, 10, 11, 92, 51, 12, 13, 14, 15, 16, 17, 18, 19, 20, 47, 94, 21, 22, 23, 44* | ⊢ |
| : , : , : , : , : , : |
7 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.circuit_equiv_temporal_sub |
8 | instantiation | 107 | ⊢ |
| : , : |
9 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.input_consolidation |
10 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
11 | instantiation | 107 | ⊢ |
| : , : |
12 | instantiation | 107 | ⊢ |
| : , : |
13 | instantiation | 24, 25 | ⊢ |
| : , : |
14 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._u_ket_register |
15 | instantiation | 31, 26, 27, 28 | ⊢ |
| : , : , : , : |
16 | instantiation | 52, 29 | ⊢ |
| : , : |
17 | instantiation | 107 | ⊢ |
| : , : |
18 | instantiation | 52, 30 | ⊢ |
| : , : |
19 | instantiation | 31, 32, 33, 34 | ⊢ |
| : , : , : , : |
20 | instantiation | 60, 89, 120, 44 | ⊢ |
| : , : , : |
21 | instantiation | 131, 78, 92 | ⊢ |
| : , : , : |
22 | instantiation | 131, 78, 35 | ⊢ |
| : , : , : |
23 | instantiation | 36, 85, 37, 38, 39, 40 | ⊢ |
| : , : |
24 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.left_from_and |
25 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec |
26 | instantiation | 41 | ⊢ |
| : , : , : |
27 | instantiation | 54 | ⊢ |
| : |
28 | instantiation | 52, 42 | ⊢ |
| : , : |
29 | instantiation | 43, 46, 44 | ⊢ |
| : , : , : |
30 | instantiation | 45, 46, 47 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
32 | instantiation | 48 | ⊢ |
| : , : |
33 | instantiation | 54 | ⊢ |
| : |
34 | instantiation | 52, 49 | ⊢ |
| : , : |
35 | instantiation | 50, 92, 51 | ⊢ |
| : , : |
36 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
37 | instantiation | 102 | ⊢ |
| : , : , : |
38 | instantiation | 54 | ⊢ |
| : |
39 | instantiation | 52, 53 | ⊢ |
| : , : |
40 | instantiation | 54 | ⊢ |
| : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3 |
42 | instantiation | 61, 55, 56 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_front |
44 | instantiation | 64, 120 | ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_back |
46 | instantiation | 57, 58, 59 | ⊢ |
| : |
47 | instantiation | 60, 120, 118, 105 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2 |
49 | instantiation | 61, 62, 63 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
51 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
52 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
53 | instantiation | 64, 65 | ⊢ |
| : |
54 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
55 | instantiation | 73, 66 | ⊢ |
| : , : , : |
56 | instantiation | 103, 67, 68 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
58 | instantiation | 69, 127, 70 | ⊢ |
| : , : |
59 | instantiation | 71, 72 | ⊢ |
| : , : |
60 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
61 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
62 | instantiation | 73, 74 | ⊢ |
| : , : , : |
63 | instantiation | 103, 75, 76 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
65 | instantiation | 131, 122, 77 | ⊢ |
| : , : , : |
66 | instantiation | 131, 78, 79 | ⊢ |
| : , : , : |
67 | instantiation | 112, 117 | ⊢ |
| : , : , : |
68 | instantiation | 87, 94, 130, 133, 96, 80, 118, 89, 120, 81* | ⊢ |
| : , : , : , : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
70 | instantiation | 108, 82, 110 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
72 | instantiation | 83, 130 | ⊢ |
| : |
73 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_len |
74 | instantiation | 84, 85, 86, 133, 97 | ⊢ |
| : , : |
75 | instantiation | 112, 117 | ⊢ |
| : , : , : |
76 | instantiation | 87, 94, 130, 133, 96, 88, 120, 89, 90* | ⊢ |
| : , : , : , : , : , : |
77 | instantiation | 108, 91, 92 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
79 | instantiation | 93, 130, 94, 95, 96, 97, 133, 98 | ⊢ |
| : , : , : , : , : |
80 | instantiation | 107 | ⊢ |
| : , : |
81 | instantiation | 103, 99, 100 | ⊢ |
| : , : , : |
82 | instantiation | 114, 101 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
84 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
86 | instantiation | 102 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.addition.association |
88 | instantiation | 107 | ⊢ |
| : , : |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
90 | instantiation | 103, 104, 105 | ⊢ |
| : , : , : |
91 | instantiation | 114, 106 | ⊢ |
| : , : |
92 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
93 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
94 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
95 | instantiation | 107 | ⊢ |
| : , : |
96 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
97 | instantiation | 108, 109, 110 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
99 | instantiation | 112, 111 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
101 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_set_within_int |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
103 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
104 | instantiation | 112, 113 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
106 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
108 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
109 | instantiation | 114, 115 | ⊢ |
| : , : |
110 | instantiation | 116, 117 | ⊢ |
| : , : |
111 | instantiation | 119, 118 | ⊢ |
| : |
112 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
113 | instantiation | 119, 120 | ⊢ |
| : |
114 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
115 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_set_within_nat |
116 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.fold_singleton |
117 | theorem | | ⊢ |
| proveit.numbers.negation.negated_zero |
118 | instantiation | 131, 122, 121 | ⊢ |
| : , : , : |
119 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
120 | instantiation | 131, 122, 123 | ⊢ |
| : , : , : |
121 | instantiation | 131, 125, 124 | ⊢ |
| : , : , : |
122 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
123 | instantiation | 131, 125, 126 | ⊢ |
| : , : , : |
124 | instantiation | 131, 128, 127 | ⊢ |
| : , : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
126 | instantiation | 131, 128, 129 | ⊢ |
| : , : , : |
127 | instantiation | 131, 132, 130 | ⊢ |
| : , : , : |
128 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
129 | instantiation | 131, 132, 133 | ⊢ |
| : , : , : |
130 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
131 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
132 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
133 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |