logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray, m
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import NumKet, Z
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _s_wire, _t
from proveit.physics.quantum.circuits import Input, Measure, MultiQubitElem, Output, Qcircuit
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Add(_t, one)
sub_expr4 = [ExprRange(sub_expr1, Measure(basis = Z), one, _t), _s_wire]
sub_expr5 = MultiQubitElem(element = Input(state = TensorProd(_Psi_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2))
sub_expr6 = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(m, _t), part = sub_expr1), targets = Interval(one, _t)), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr3, sub_expr2)), one, _s)]
expr = Equals([Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, sub_expr2)], sub_expr4, sub_expr6))], [Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr5, sub_expr3, sub_expr2).with_wrapping_at(2,6)], sub_expr4, sub_expr6))])
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(QCIRCUIT\left(VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, ..\left(t - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right)\right)\right) = \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{4}{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3ExprTuple5
4ExprTuple6
5Operationoperator: 8
operands: 7
6Operationoperator: 8
operands: 9
7ExprTuple10, 12, 13
8Literal
9ExprTuple11, 12, 13
10ExprTuple14
11ExprTuple15, 16
12ExprTuple17, 18
13ExprTuple19, 20
14ExprRangelambda_map: 21
start_index: 72
end_index: 61
15ExprRangelambda_map: 21
start_index: 72
end_index: 73
16ExprRangelambda_map: 21
start_index: 60
end_index: 61
17ExprRangelambda_map: 22
start_index: 72
end_index: 73
18ExprRangelambda_map: 23
start_index: 72
end_index: 74
19ExprRangelambda_map: 24
start_index: 72
end_index: 73
20ExprRangelambda_map: 25
start_index: 72
end_index: 74
21Lambdaparameter: 59
body: 26
22Lambdaparameter: 59
body: 27
23Lambdaparameter: 59
body: 28
24Lambdaparameter: 59
body: 29
25Lambdaparameter: 59
body: 31
26Operationoperator: 38
operands: 32
27Operationoperator: 33
operands: 34
28Operationoperator: 35
operands: 36
29Operationoperator: 38
operands: 37
30ExprTuple59
31Operationoperator: 38
operands: 39
32NamedExprselement: 40
targets: 41
33Literal
34NamedExprsbasis: 42
35Literal
36NamedExprsoperation: 43
37NamedExprselement: 44
targets: 45
38Literal
39NamedExprselement: 46
targets: 47
40Operationoperator: 48
operands: 49
41Operationoperator: 55
operands: 50
42Literal
43Literal
44Operationoperator: 53
operands: 51
45Operationoperator: 55
operands: 52
46Operationoperator: 53
operands: 54
47Operationoperator: 55
operands: 56
48Literal
49NamedExprsstate: 57
part: 59
50ExprTuple72, 61
51NamedExprsstate: 58
part: 59
52ExprTuple72, 73
53Literal
54NamedExprsstate: 70
part: 59
55Literal
56ExprTuple60, 61
57Operationoperator: 62
operands: 63
58Operationoperator: 64
operands: 65
59Variable
60Operationoperator: 67
operands: 66
61Operationoperator: 67
operands: 68
62Literal
63ExprTuple69, 70
64Literal
65ExprTuple71, 73
66ExprTuple73, 72
67Literal
68ExprTuple73, 74
69Literal
70Literal
71Variable
72Literal
73Literal
74Literal