logo
In [1]:
import proveit
theory = proveit.Theory() # the theorem's theory

from proveit import n, t
from proveit.physics.quantum.QFT import invFT_is_unitary
from proveit.physics.quantum.QPE import (
    _t, _t_in_natural_pos, _psi_t_ket_is_normalized_vec, _Psi_def)
In [2]:
%proving _Psi_ket_is_normalized_vec
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
_Psi_ket_is_normalized_vec:
(see dependencies)
In [3]:
_psi_t_ket_is_normalized_vec.instantiate({t:_t})
In [4]:
_Psi_def
In [5]:
invFT_is_unitary
In [6]:
invFT_is_unitary.instantiate({n:_t})
In [7]:
_Psi_def.rhs.compute_norm(replacements=[_Psi_def.derive_reversed()])
_Psi_ket_is_normalized_vec may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [8]:
%qed
proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec has been proven.
Out[8]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.booleans.conjunction.and_if_both
2instantiation4, 7, 8, 5, 10*  ⊢  
  : , : , :
3instantiation6, 7, 8, 9, 12, 10*  ⊢  
  : , : , : , :
4conjecture  ⊢  
 proveit.physics.quantum.algebra.state_space_preservation
5instantiation11, 12  ⊢  
  : , :
6conjecture  ⊢  
 proveit.physics.quantum.algebra.normalization_preservation
7instantiation13, 14, 15  ⊢  
  : , :
8instantiation16, 23  ⊢  
  :
9instantiation24, 17, 18  ⊢  
  : , : , :
10instantiation19, 20  ⊢  
  : , :
11theorem  ⊢  
 proveit.logic.booleans.conjunction.left_from_and
12instantiation21, 23  ⊢  
  :
13conjecture  ⊢  
 proveit.numbers.exponentiation.exp_natpos_closure
14conjecture  ⊢  
 proveit.numbers.numerals.decimals.nat2
15instantiation24, 22, 23  ⊢  
  : , : , :
16conjecture  ⊢  
 proveit.physics.quantum.QFT.invFT_is_unitary
17conjecture  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonneg_within_real_nonneg
18instantiation24, 25, 26  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.logic.equality.equals_reversal
20axiom  ⊢  
 proveit.physics.quantum.QPE._Psi_def
21conjecture  ⊢  
 proveit.physics.quantum.QPE._psi_t_ket_is_normalized_vec
22conjecture  ⊢  
 proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat
23axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
24theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
25conjecture  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_within_rational_nonneg
26theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements