| step type | requirements | statement |
0 | modus ponens | 1, 2 | ⊢ |
1 | instantiation | 3, 90, 129, 126, 92, 4 | ⊢ |
| : , : , : , : , : , : , : , : |
2 | instantiation | 5, 6, 7, 88, 47, 8, 9, 10, 11, 12, 13, 14, 15, 16, 43, 90, 17, 18, 19, 40* | ⊢ |
| : , : , : , : , : , : |
3 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.circuit_equiv_temporal_sub |
4 | instantiation | 103 | ⊢ |
| : , : |
5 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.input_consolidation |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
7 | instantiation | 103 | ⊢ |
| : , : |
8 | instantiation | 103 | ⊢ |
| : , : |
9 | instantiation | 20, 21 | ⊢ |
| : , : |
10 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._u_ket_register |
11 | instantiation | 27, 22, 23, 24 | ⊢ |
| : , : , : , : |
12 | instantiation | 48, 25 | ⊢ |
| : , : |
13 | instantiation | 103 | ⊢ |
| : , : |
14 | instantiation | 48, 26 | ⊢ |
| : , : |
15 | instantiation | 27, 28, 29, 30 | ⊢ |
| : , : , : , : |
16 | instantiation | 56, 85, 116, 40 | ⊢ |
| : , : , : |
17 | instantiation | 127, 74, 88 | ⊢ |
| : , : , : |
18 | instantiation | 127, 74, 31 | ⊢ |
| : , : , : |
19 | instantiation | 32, 81, 33, 34, 35, 36 | ⊢ |
| : , : |
20 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.left_from_and |
21 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec |
22 | instantiation | 37 | ⊢ |
| : , : , : |
23 | instantiation | 50 | ⊢ |
| : |
24 | instantiation | 48, 38 | ⊢ |
| : , : |
25 | instantiation | 39, 42, 40 | ⊢ |
| : , : , : |
26 | instantiation | 41, 42, 43 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
28 | instantiation | 44 | ⊢ |
| : , : |
29 | instantiation | 50 | ⊢ |
| : |
30 | instantiation | 48, 45 | ⊢ |
| : , : |
31 | instantiation | 46, 88, 47 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
33 | instantiation | 98 | ⊢ |
| : , : , : |
34 | instantiation | 50 | ⊢ |
| : |
35 | instantiation | 48, 49 | ⊢ |
| : , : |
36 | instantiation | 50 | ⊢ |
| : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3 |
38 | instantiation | 57, 51, 52 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_front |
40 | instantiation | 60, 116 | ⊢ |
| : |
41 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_back |
42 | instantiation | 53, 54, 55 | ⊢ |
| : |
43 | instantiation | 56, 116, 114, 101 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2 |
45 | instantiation | 57, 58, 59 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
47 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
48 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
49 | instantiation | 60, 61 | ⊢ |
| : |
50 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
51 | instantiation | 69, 62 | ⊢ |
| : , : , : |
52 | instantiation | 99, 63, 64 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
54 | instantiation | 65, 123, 66 | ⊢ |
| : , : |
55 | instantiation | 67, 68 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
57 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
58 | instantiation | 69, 70 | ⊢ |
| : , : , : |
59 | instantiation | 99, 71, 72 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
61 | instantiation | 127, 118, 73 | ⊢ |
| : , : , : |
62 | instantiation | 127, 74, 75 | ⊢ |
| : , : , : |
63 | instantiation | 108, 113 | ⊢ |
| : , : , : |
64 | instantiation | 83, 90, 126, 129, 92, 76, 114, 85, 116, 77* | ⊢ |
| : , : , : , : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
66 | instantiation | 104, 78, 106 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
68 | instantiation | 79, 126 | ⊢ |
| : |
69 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_len |
70 | instantiation | 80, 81, 82, 129, 93 | ⊢ |
| : , : |
71 | instantiation | 108, 113 | ⊢ |
| : , : , : |
72 | instantiation | 83, 90, 126, 129, 92, 84, 116, 85, 86* | ⊢ |
| : , : , : , : , : , : |
73 | instantiation | 104, 87, 88 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
75 | instantiation | 89, 126, 90, 91, 92, 93, 129, 94 | ⊢ |
| : , : , : , : , : |
76 | instantiation | 103 | ⊢ |
| : , : |
77 | instantiation | 99, 95, 96 | ⊢ |
| : , : , : |
78 | instantiation | 110, 97 | ⊢ |
| : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
80 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure |
81 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
82 | instantiation | 98 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.addition.association |
84 | instantiation | 103 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
86 | instantiation | 99, 100, 101 | ⊢ |
| : , : , : |
87 | instantiation | 110, 102 | ⊢ |
| : , : |
88 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
89 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
90 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
91 | instantiation | 103 | ⊢ |
| : , : |
92 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
93 | instantiation | 104, 105, 106 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
95 | instantiation | 108, 107 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_set_within_int |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
99 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
100 | instantiation | 108, 109 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
104 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
105 | instantiation | 110, 111 | ⊢ |
| : , : |
106 | instantiation | 112, 113 | ⊢ |
| : , : |
107 | instantiation | 115, 114 | ⊢ |
| : |
108 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
109 | instantiation | 115, 116 | ⊢ |
| : |
110 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
111 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_set_within_nat |
112 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.fold_singleton |
113 | theorem | | ⊢ |
| proveit.numbers.negation.negated_zero |
114 | instantiation | 127, 118, 117 | ⊢ |
| : , : , : |
115 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
116 | instantiation | 127, 118, 119 | ⊢ |
| : , : , : |
117 | instantiation | 127, 121, 120 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
119 | instantiation | 127, 121, 122 | ⊢ |
| : , : , : |
120 | instantiation | 127, 124, 123 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
122 | instantiation | 127, 124, 125 | ⊢ |
| : , : , : |
123 | instantiation | 127, 128, 126 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
125 | instantiation | 127, 128, 129 | ⊢ |
| : , : , : |
126 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
127 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
128 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
129 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |