logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, m
from proveit.core_expr_types import Len
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, three
from proveit.physics.quantum import NumKet, Z
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _s_wire, _t
from proveit.physics.quantum.circuits import Input, Measure, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Variable("_b", latex_format = r"{_{-}b}")
sub_expr3 = Add(_t, _s)
sub_expr4 = Add(_t, one)
sub_expr5 = MultiQubitElem(element = Input(state = TensorProd(_Psi_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = Equals(Len(operands = [ExprRange(sub_expr1, sub_expr5, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr5, sub_expr4, sub_expr3).with_wrapping_at(2,6), ExprRange(sub_expr1, Measure(basis = Z), one, _t), _s_wire, ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(m, _t), part = sub_expr1), targets = Interval(one, _t)), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr4, sub_expr3)), one, _s)]), Len(operands = [ExprRange(sub_expr2, ExprRange(sub_expr1, [sub_expr2, sub_expr1], one, sub_expr3), one, three)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, ..\left(t - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)| = |\left(\left(1, 1\right), \left(1, 2\right), \ldots, \left(1, t + s\right), \left(2, 1\right), \left(2, 2\right), \ldots, \left(2, t + s\right), \ldots\ldots, \left(3, 1\right), \left(3, 2\right), \ldots, \left(3, t + s\right)\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9, 10, 11, 12, 13
6Literal
7ExprTuple14
8ExprRangelambda_map: 15
start_index: 73
end_index: 74
9ExprRangelambda_map: 15
start_index: 61
end_index: 62
10ExprRangelambda_map: 16
start_index: 73
end_index: 74
11ExprRangelambda_map: 17
start_index: 73
end_index: 75
12ExprRangelambda_map: 18
start_index: 73
end_index: 74
13ExprRangelambda_map: 19
start_index: 73
end_index: 75
14ExprRangelambda_map: 20
start_index: 73
end_index: 21
15Lambdaparameter: 60
body: 22
16Lambdaparameter: 60
body: 23
17Lambdaparameter: 60
body: 24
18Lambdaparameter: 60
body: 25
19Lambdaparameter: 60
body: 26
20Lambdaparameter: 57
body: 28
21Literal
22Operationoperator: 35
operands: 29
23Operationoperator: 30
operands: 31
24Operationoperator: 32
operands: 33
25Operationoperator: 35
operands: 34
26Operationoperator: 35
operands: 36
27ExprTuple57
28ExprRangelambda_map: 37
start_index: 73
end_index: 62
29NamedExprselement: 38
targets: 39
30Literal
31NamedExprsbasis: 40
32Literal
33NamedExprsoperation: 41
34NamedExprselement: 42
targets: 43
35Literal
36NamedExprselement: 44
targets: 45
37Lambdaparameter: 60
body: 47
38Operationoperator: 48
operands: 49
39Operationoperator: 55
operands: 50
40Literal
41Literal
42Operationoperator: 53
operands: 51
43Operationoperator: 55
operands: 52
44Operationoperator: 53
operands: 54
45Operationoperator: 55
operands: 56
46ExprTuple60
47ExprTuple57, 60
48Literal
49NamedExprsstate: 58
part: 60
50ExprTuple73, 62
51NamedExprsstate: 59
part: 60
52ExprTuple73, 74
53Literal
54NamedExprsstate: 71
part: 60
55Literal
56ExprTuple61, 62
57Variable
58Operationoperator: 63
operands: 64
59Operationoperator: 65
operands: 66
60Variable
61Operationoperator: 68
operands: 67
62Operationoperator: 68
operands: 69
63Literal
64ExprTuple70, 71
65Literal
66ExprTuple72, 74
67ExprTuple74, 73
68Literal
69ExprTuple74, 75
70Literal
71Literal
72Variable
73Literal
74Literal
75Literal