logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray, m
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import NumKet, Z
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _s_wire, _t
from proveit.physics.quantum.circuits import Input, Measure, MultiQubitElem, Output, Qcircuit
from proveit.statistics import Prob
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Interval(one, _t)
sub_expr4 = Interval(Add(_t, one), sub_expr2)
sub_expr5 = [ExprRange(sub_expr1, Measure(basis = Z), one, _t), _s_wire]
sub_expr6 = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(m, _t), part = sub_expr1), targets = sub_expr3), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr4), one, _s)]
expr = Equals(Prob(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, MultiQubitElem(element = Input(state = TensorProd(_Psi_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2)), one, sub_expr2)], sub_expr5, sub_expr6))), Prob(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _Psi_ket, part = sub_expr1), targets = sub_expr3), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr4), one, _s)], sub_expr5, sub_expr6))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\textrm{Pr}\left(QCIRCUIT\left(VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, ..\left(t - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert m \rangle_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right)\right)\right) = \textrm{Pr}\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{3}{\lvert \Psi \rangle} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\qin{\lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operand: 8
4Operationoperator: 6
operand: 9
5ExprTuple8
6Literal
7ExprTuple9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 15, 16
11Literal
12ExprTuple14, 15, 16
13ExprTuple17
14ExprTuple18, 19
15ExprTuple20, 21
16ExprTuple22, 23
17ExprRangelambda_map: 24
start_index: 84
end_index: 73
18ExprRangelambda_map: 25
start_index: 84
end_index: 85
19ExprRangelambda_map: 26
start_index: 84
end_index: 86
20ExprRangelambda_map: 27
start_index: 84
end_index: 85
21ExprRangelambda_map: 28
start_index: 84
end_index: 86
22ExprRangelambda_map: 29
start_index: 84
end_index: 85
23ExprRangelambda_map: 30
start_index: 84
end_index: 86
24Lambdaparameter: 71
body: 31
25Lambdaparameter: 71
body: 32
26Lambdaparameter: 71
body: 33
27Lambdaparameter: 71
body: 34
28Lambdaparameter: 71
body: 35
29Lambdaparameter: 71
body: 36
30Lambdaparameter: 71
body: 38
31Operationoperator: 47
operands: 39
32Operationoperator: 47
operands: 40
33Operationoperator: 47
operands: 41
34Operationoperator: 42
operands: 43
35Operationoperator: 44
operands: 45
36Operationoperator: 47
operands: 46
37ExprTuple71
38Operationoperator: 47
operands: 48
39NamedExprselement: 49
targets: 50
40NamedExprselement: 51
targets: 56
41NamedExprselement: 52
targets: 58
42Literal
43NamedExprsbasis: 53
44Literal
45NamedExprsoperation: 54
46NamedExprselement: 55
targets: 56
47Literal
48NamedExprselement: 57
targets: 58
49Operationoperator: 62
operands: 59
50Operationoperator: 67
operands: 60
51Operationoperator: 62
operands: 61
52Operationoperator: 62
operands: 66
53Literal
54Literal
55Operationoperator: 65
operands: 63
56Operationoperator: 67
operands: 64
57Operationoperator: 65
operands: 66
58Operationoperator: 67
operands: 68
59NamedExprsstate: 69
part: 71
60ExprTuple84, 73
61NamedExprsstate: 81
part: 71
62Literal
63NamedExprsstate: 70
part: 71
64ExprTuple84, 85
65Literal
66NamedExprsstate: 82
part: 71
67Literal
68ExprTuple72, 73
69Operationoperator: 74
operands: 75
70Operationoperator: 76
operands: 77
71Variable
72Operationoperator: 79
operands: 78
73Operationoperator: 79
operands: 80
74Literal
75ExprTuple81, 82
76Literal
77ExprTuple83, 85
78ExprTuple85, 84
79Literal
80ExprTuple85, 86
81Literal
82Literal
83Variable
84Literal
85Literal
86Literal