| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | , , , , ⊢ |
| : , : , : |
1 | reference | 112 | ⊢ |
2 | instantiation | 100, 136, 167, 5, 6, 7, 8, 9 | , , , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 10, 11, 12, 13 | , , ⊢ |
| : , : , : , : |
4 | instantiation | 129, 14, 15 | , , , , ⊢ |
| : , : , : |
5 | instantiation | 150 | ⊢ |
| : , : |
6 | instantiation | 58, 82, 25 | ⊢ |
| : , : |
7 | instantiation | 58, 82, 16 | , ⊢ |
| : , : |
8 | instantiation | 58, 82, 17 | , ⊢ |
| : , : |
9 | instantiation | 58, 82, 27 | ⊢ |
| : , : |
10 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
11 | instantiation | 85, 18 | , ⊢ |
| : , : , : |
12 | instantiation | 85, 19 | , ⊢ |
| : , : , : |
13 | instantiation | 56, 20 | , , ⊢ |
| : , : |
14 | instantiation | 85, 21 | , , ⊢ |
| : , : , : |
15 | instantiation | 22, 23, 24, 124, 25, 26, 27 | , , , , ⊢ |
| : , : , : |
16 | instantiation | 112, 28, 29 | , ⊢ |
| : , : , : |
17 | instantiation | 112, 30, 31 | , ⊢ |
| : , : , : |
18 | instantiation | 129, 32, 33 | , ⊢ |
| : , : , : |
19 | instantiation | 129, 34, 35 | , ⊢ |
| : , : , : |
20 | instantiation | 36, 37, 38, 132, 39, 40 | , , ⊢ |
| : , : , : |
21 | instantiation | 129, 41, 42 | , , ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.exponentiation.products_of_complex_powers |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
24 | instantiation | 118 | ⊢ |
| : , : , : |
25 | instantiation | 112, 43, 44 | ⊢ |
| : , : , : |
26 | instantiation | 147, 64, 117 | , , ⊢ |
| : , : |
27 | instantiation | 112, 45, 46 | ⊢ |
| : , : , : |
28 | instantiation | 147, 137, 47 | , ⊢ |
| : , : |
29 | instantiation | 129, 48, 49 | , ⊢ |
| : , : , : |
30 | instantiation | 147, 137, 50 | , ⊢ |
| : , : |
31 | instantiation | 129, 51, 52 | , ⊢ |
| : , : , : |
32 | instantiation | 85, 53 | , ⊢ |
| : , : , : |
33 | instantiation | 56, 54 | , ⊢ |
| : , : |
34 | instantiation | 85, 55 | , ⊢ |
| : , : , : |
35 | instantiation | 56, 57 | , ⊢ |
| : , : |
36 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_product |
37 | instantiation | 58, 82, 89 | ⊢ |
| : , : |
38 | instantiation | 58, 82, 90 | ⊢ |
| : , : |
39 | instantiation | 59, 60, 61 | ⊢ |
| : , : , : |
40 | instantiation | 81, 82, 90, 84 | ⊢ |
| : , : |
41 | instantiation | 85, 62 | , ⊢ |
| : , : , : |
42 | instantiation | 63, 124, 64, 117 | , , ⊢ |
| : , : , : |
43 | instantiation | 147, 137, 65 | ⊢ |
| : , : |
44 | instantiation | 129, 66, 67 | ⊢ |
| : , : , : |
45 | instantiation | 147, 137, 68 | ⊢ |
| : , : |
46 | instantiation | 129, 69, 70 | ⊢ |
| : , : , : |
47 | instantiation | 112, 71, 72 | , ⊢ |
| : , : , : |
48 | instantiation | 138, 136, 98, 139, 73, 140, 137, 143, 117, 135 | , ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 138, 139, 167, 98, 140, 141, 73, 148, 149, 143, 117, 135 | , ⊢ |
| : , : , : , : , : , : |
50 | instantiation | 112, 74, 75 | , ⊢ |
| : , : , : |
51 | instantiation | 138, 136, 98, 139, 76, 140, 137, 143, 144, 117 | , ⊢ |
| : , : , : , : , : , : |
52 | instantiation | 138, 139, 167, 98, 140, 141, 76, 148, 149, 143, 144, 117 | , ⊢ |
| : , : , : , : , : , : |
53 | instantiation | 129, 77, 78 | , ⊢ |
| : , : , : |
54 | instantiation | 80, 82, 89, 84 | , ⊢ |
| : , : |
55 | instantiation | 100, 139, 101, 136, 140, 79, 148, 149, 143, 144, 117 | , ⊢ |
| : , : , : , : , : , : |
56 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
57 | instantiation | 80, 82, 90, 84 | , ⊢ |
| : , : |
58 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
59 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
60 | instantiation | 81, 82, 83, 84 | ⊢ |
| : , : |
61 | instantiation | 85, 86 | ⊢ |
| : , : , : |
62 | instantiation | 87, 124, 89, 90 | , ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_power_of_complex_power |
64 | instantiation | 88, 89, 90 | , ⊢ |
| : , : |
65 | instantiation | 147, 143, 92 | ⊢ |
| : , : |
66 | instantiation | 138, 136, 167, 139, 91, 140, 137, 143, 92 | ⊢ |
| : , : , : , : , : , : |
67 | instantiation | 138, 139, 167, 140, 141, 91, 148, 149, 143, 92 | ⊢ |
| : , : , : , : , : , : |
68 | instantiation | 147, 143, 94 | ⊢ |
| : , : |
69 | instantiation | 138, 136, 167, 139, 93, 140, 137, 143, 94 | ⊢ |
| : , : , : , : , : , : |
70 | instantiation | 138, 139, 167, 140, 141, 93, 148, 149, 143, 94 | ⊢ |
| : , : , : , : , : , : |
71 | instantiation | 147, 95, 135 | , ⊢ |
| : , : |
72 | instantiation | 138, 139, 167, 136, 140, 96, 143, 117, 135 | , ⊢ |
| : , : , : , : , : , : |
73 | instantiation | 118 | ⊢ |
| : , : , : |
74 | instantiation | 147, 128, 117 | , ⊢ |
| : , : |
75 | instantiation | 138, 139, 167, 136, 140, 142, 143, 144, 117 | , ⊢ |
| : , : , : , : , : , : |
76 | instantiation | 118 | ⊢ |
| : , : , : |
77 | instantiation | 97, 98, 136, 139, 99, 140, 148, 149, 143, 117, 135 | , ⊢ |
| : , : , : , : , : , : , : |
78 | instantiation | 100, 139, 101, 136, 140, 102, 148, 149, 143, 135, 117 | , ⊢ |
| : , : , : , : , : , : |
79 | instantiation | 119 | ⊢ |
| : , : , : , : |
80 | instantiation | 103, 152 | ⊢ |
| : |
81 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_not_eq_zero |
82 | instantiation | 165, 155, 104 | ⊢ |
| : , : , : |
83 | instantiation | 112, 105, 106 | ⊢ |
| : , : , : |
84 | instantiation | 107, 108 | ⊢ |
| : |
85 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
86 | instantiation | 109, 167, 136, 139, 141, 140, 148, 149, 143, 135 | ⊢ |
| : , : , : , : , : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_complex_powers |
88 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
89 | instantiation | 112, 110, 111 | ⊢ |
| : , : , : |
90 | instantiation | 112, 113, 114 | ⊢ |
| : , : , : |
91 | instantiation | 150 | ⊢ |
| : , : |
92 | instantiation | 165, 155, 115 | ⊢ |
| : , : , : |
93 | instantiation | 150 | ⊢ |
| : , : |
94 | instantiation | 165, 155, 116 | ⊢ |
| : , : , : |
95 | instantiation | 147, 143, 117 | ⊢ |
| : , : |
96 | instantiation | 150 | ⊢ |
| : , : |
97 | theorem | | ⊢ |
| proveit.numbers.multiplication.rightward_commutation |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
99 | instantiation | 118 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
102 | instantiation | 119 | ⊢ |
| : , : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.exponentiation.int_exp_of_exp |
104 | instantiation | 165, 161, 124 | ⊢ |
| : , : , : |
105 | instantiation | 147, 137, 120 | ⊢ |
| : , : |
106 | instantiation | 129, 121, 122 | ⊢ |
| : , : , : |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
108 | instantiation | 165, 123, 124 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
110 | instantiation | 147, 137, 125 | ⊢ |
| : , : |
111 | instantiation | 129, 126, 127 | ⊢ |
| : , : , : |
112 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
113 | instantiation | 147, 137, 128 | ⊢ |
| : , : |
114 | instantiation | 129, 130, 131 | ⊢ |
| : , : , : |
115 | assumption | | ⊢ |
116 | assumption | | ⊢ |
117 | instantiation | 165, 155, 132 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
119 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
120 | instantiation | 147, 135, 143 | ⊢ |
| : , : |
121 | instantiation | 138, 136, 167, 139, 133, 140, 137, 135, 143 | ⊢ |
| : , : , : , : , : , : |
122 | instantiation | 138, 139, 167, 140, 141, 133, 148, 149, 135, 143 | ⊢ |
| : , : , : , : , : , : |
123 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
125 | instantiation | 147, 143, 135 | ⊢ |
| : , : |
126 | instantiation | 138, 136, 167, 139, 134, 140, 137, 143, 135 | ⊢ |
| : , : , : , : , : , : |
127 | instantiation | 138, 139, 167, 140, 141, 134, 148, 149, 143, 135 | ⊢ |
| : , : , : , : , : , : |
128 | instantiation | 147, 143, 144 | ⊢ |
| : , : |
129 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
130 | instantiation | 138, 136, 167, 139, 142, 140, 137, 143, 144 | ⊢ |
| : , : , : , : , : , : |
131 | instantiation | 138, 139, 167, 140, 141, 142, 148, 149, 143, 144 | ⊢ |
| : , : , : , : , : , : |
132 | instantiation | 165, 159, 145 | ⊢ |
| : , : , : |
133 | instantiation | 150 | ⊢ |
| : , : |
134 | instantiation | 150 | ⊢ |
| : , : |
135 | instantiation | 165, 155, 146 | ⊢ |
| : , : , : |
136 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
137 | instantiation | 147, 148, 149 | ⊢ |
| : , : |
138 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
139 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
140 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
141 | instantiation | 150 | ⊢ |
| : , : |
142 | instantiation | 150 | ⊢ |
| : , : |
143 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
144 | instantiation | 165, 155, 151 | ⊢ |
| : , : , : |
145 | instantiation | 165, 163, 152 | ⊢ |
| : , : , : |
146 | instantiation | 165, 159, 153 | ⊢ |
| : , : , : |
147 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
148 | instantiation | 165, 155, 154 | ⊢ |
| : , : , : |
149 | instantiation | 165, 155, 156 | ⊢ |
| : , : , : |
150 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
151 | instantiation | 165, 161, 157 | ⊢ |
| : , : , : |
152 | assumption | | ⊢ |
153 | instantiation | 165, 163, 158 | ⊢ |
| : , : , : |
154 | instantiation | 165, 159, 160 | ⊢ |
| : , : , : |
155 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
156 | instantiation | 165, 161, 162 | ⊢ |
| : , : , : |
157 | assumption | | ⊢ |
158 | assumption | | ⊢ |
159 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
160 | instantiation | 165, 163, 164 | ⊢ |
| : , : , : |
161 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
162 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
163 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
164 | instantiation | 165, 166, 167 | ⊢ |
| : , : , : |
165 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
166 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
167 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |