| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , ⊢ |
| : , : , : |
1 | reference | 51 | ⊢ |
2 | instantiation | 18, 4 | , , ⊢ |
| : , : , : |
3 | instantiation | 5, 6, 7, 30, 8, 9, 10 | , , , , ⊢ |
| : , : , : |
4 | instantiation | 51, 11, 12 | , , ⊢ |
| : , : , : |
5 | theorem | | ⊢ |
| proveit.numbers.exponentiation.products_of_complex_powers |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
7 | instantiation | 13 | ⊢ |
| : , : , : |
8 | instantiation | 41, 14, 15 | ⊢ |
| : , : , : |
9 | instantiation | 67, 21, 22 | , , ⊢ |
| : , : |
10 | instantiation | 41, 16, 17 | ⊢ |
| : , : , : |
11 | instantiation | 18, 19 | , ⊢ |
| : , : , : |
12 | instantiation | 20, 30, 21, 22 | , , ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
14 | instantiation | 67, 58, 23 | ⊢ |
| : , : |
15 | instantiation | 51, 24, 25 | ⊢ |
| : , : , : |
16 | instantiation | 67, 58, 26 | ⊢ |
| : , : |
17 | instantiation | 51, 27, 28 | ⊢ |
| : , : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
19 | instantiation | 29, 30, 32, 33 | , ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_power_of_complex_power |
21 | instantiation | 31, 32, 33 | , ⊢ |
| : , : |
22 | instantiation | 84, 74, 34 | ⊢ |
| : , : , : |
23 | instantiation | 67, 64, 36 | ⊢ |
| : , : |
24 | instantiation | 59, 57, 86, 60, 35, 61, 58, 64, 36 | ⊢ |
| : , : , : , : , : , : |
25 | instantiation | 59, 60, 86, 61, 62, 35, 68, 69, 64, 36 | ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 67, 64, 38 | ⊢ |
| : , : |
27 | instantiation | 59, 57, 86, 60, 37, 61, 58, 64, 38 | ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 59, 60, 86, 61, 62, 37, 68, 69, 64, 38 | ⊢ |
| : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_complex_powers |
30 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
31 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
32 | instantiation | 41, 39, 40 | ⊢ |
| : , : , : |
33 | instantiation | 41, 42, 43 | ⊢ |
| : , : , : |
34 | instantiation | 84, 78, 44 | ⊢ |
| : , : , : |
35 | instantiation | 70 | ⊢ |
| : , : |
36 | instantiation | 84, 74, 45 | ⊢ |
| : , : , : |
37 | instantiation | 70 | ⊢ |
| : , : |
38 | instantiation | 84, 74, 46 | ⊢ |
| : , : , : |
39 | instantiation | 67, 58, 47 | ⊢ |
| : , : |
40 | instantiation | 51, 48, 49 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
42 | instantiation | 67, 58, 50 | ⊢ |
| : , : |
43 | instantiation | 51, 52, 53 | ⊢ |
| : , : , : |
44 | instantiation | 84, 82, 54 | ⊢ |
| : , : , : |
45 | assumption | | ⊢ |
46 | assumption | | ⊢ |
47 | instantiation | 67, 64, 56 | ⊢ |
| : , : |
48 | instantiation | 59, 57, 86, 60, 55, 61, 58, 64, 56 | ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 59, 60, 86, 61, 62, 55, 68, 69, 64, 56 | ⊢ |
| : , : , : , : , : , : |
50 | instantiation | 67, 64, 65 | ⊢ |
| : , : |
51 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
52 | instantiation | 59, 57, 86, 60, 63, 61, 58, 64, 65 | ⊢ |
| : , : , : , : , : , : |
53 | instantiation | 59, 60, 86, 61, 62, 63, 68, 69, 64, 65 | ⊢ |
| : , : , : , : , : , : |
54 | assumption | | ⊢ |
55 | instantiation | 70 | ⊢ |
| : , : |
56 | instantiation | 84, 74, 66 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
58 | instantiation | 67, 68, 69 | ⊢ |
| : , : |
59 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
60 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
61 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
62 | instantiation | 70 | ⊢ |
| : , : |
63 | instantiation | 70 | ⊢ |
| : , : |
64 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
65 | instantiation | 84, 74, 71 | ⊢ |
| : , : , : |
66 | instantiation | 84, 78, 72 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
68 | instantiation | 84, 74, 73 | ⊢ |
| : , : , : |
69 | instantiation | 84, 74, 75 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
71 | instantiation | 84, 80, 76 | ⊢ |
| : , : , : |
72 | instantiation | 84, 82, 77 | ⊢ |
| : , : , : |
73 | instantiation | 84, 78, 79 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
75 | instantiation | 84, 80, 81 | ⊢ |
| : , : , : |
76 | assumption | | ⊢ |
77 | assumption | | ⊢ |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
79 | instantiation | 84, 82, 83 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
83 | instantiation | 84, 85, 86 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |