logo

Expression of type Equals

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, a, b, delta, k, theta
from proveit.core_expr_types import Len
from proveit.logic import Equals
from proveit.numbers import Add, Mult, i, one, pi, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Equals(Len(operands = [Mult(two, pi, i, a), Mult(Add(Mult(two, pi, i, delta), Mult(two, pi, i, theta)), k), Mult(two, pi, i, b)]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, three)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(2 \cdot \pi \cdot \mathsf{i} \cdot a, \left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k, 2 \cdot \pi \cdot \mathsf{i} \cdot b\right)| = |\left(1, 2, \ldots, 3\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9, 10
6Literal
7ExprTuple11
8Operationoperator: 29
operands: 12
9Operationoperator: 29
operands: 13
10Operationoperator: 29
operands: 14
11ExprRangelambda_map: 15
start_index: 16
end_index: 17
12ExprTuple32, 33, 34, 18
13ExprTuple19, 20
14ExprTuple32, 33, 34, 21
15Lambdaparameter: 25
body: 25
16Literal
17Literal
18Variable
19Operationoperator: 23
operands: 24
20Variable
21Variable
22ExprTuple25
23Literal
24ExprTuple26, 27
25Variable
26Operationoperator: 29
operands: 28
27Operationoperator: 29
operands: 30
28ExprTuple32, 33, 34, 31
29Literal
30ExprTuple32, 33, 34, 35
31Variable
32Literal
33Literal
34Literal
35Variable