logo

Expression of type Exp

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import delta, k
from proveit.numbers import Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
expr = Exp(e, Mult(two, pi, i, k, delta))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot \delta}
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Literal
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple7, 8, 9, 10, 11
7Literal
8Literal
9Literal
10Variable
11Variable