logo

Expression of type Forall

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, m
from proveit.core_expr_types import b_1_to_m
from proveit.logic import Equals, Forall
from proveit.numbers import Add, Complex, Exp, NaturalPos, RealPos
from proveit.numbers.exponentiation import prod_a_raise_bi__1_to_m
In [2]:
# build up the expression from sub-expressions
expr = Forall(instance_param_or_params = [m], instance_expr = Forall(instance_param_or_params = [a, b_1_to_m], instance_expr = Equals(prod_a_raise_bi__1_to_m, Exp(a, Add(b_1_to_m))), domains = [RealPos, Complex]), domain = NaturalPos)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\forall_{m \in \mathbb{N}^+}~\left[\forall_{a \in \mathbb{R}^+,\left(b_{1} \in \mathbb{C}\right), \left(b_{2} \in \mathbb{C}\right), \ldots, \left(b_{m} \in \mathbb{C}\right)}~\left(\left(a^{b_{1}} \cdot  a^{b_{2}} \cdot  \ldots \cdot  a^{b_{m}}\right) = a^{b_{1} +  b_{2} +  \ldots +  b_{m}}\right)\right]
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneNone/False('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 7
operand: 2
1ExprTuple2
2Lambdaparameter: 45
body: 4
3ExprTuple45
4Conditionalvalue: 5
condition: 6
5Operationoperator: 7
operand: 10
6Operationoperator: 36
operands: 9
7Literal
8ExprTuple10
9ExprTuple45, 11
10Lambdaparameters: 12
body: 13
11Literal
12ExprTuple46, 39
13Conditionalvalue: 14
condition: 15
14Operationoperator: 16
operands: 17
15Operationoperator: 18
operands: 19
16Literal
17ExprTuple20, 21
18Literal
19ExprTuple22, 23
20Operationoperator: 24
operands: 25
21Operationoperator: 41
operands: 26
22Operationoperator: 36
operands: 27
23ExprRangelambda_map: 28
start_index: 44
end_index: 45
24Literal
25ExprTuple29
26ExprTuple46, 30
27ExprTuple46, 31
28Lambdaparameter: 50
body: 32
29ExprRangelambda_map: 33
start_index: 44
end_index: 45
30Operationoperator: 34
operands: 35
31Literal
32Operationoperator: 36
operands: 37
33Lambdaparameter: 50
body: 38
34Literal
35ExprTuple39
36Literal
37ExprTuple47, 40
38Operationoperator: 41
operands: 42
39ExprRangelambda_map: 43
start_index: 44
end_index: 45
40Literal
41Literal
42ExprTuple46, 47
43Lambdaparameter: 50
body: 47
44Literal
45Variable
46Variable
47IndexedVarvariable: 48
index: 50
48Variable
49ExprTuple50
50Variable