| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7 | , , , , ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.products_of_complex_powers |
| 2 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 3 | instantiation | 8 | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.e_is_real_pos |
| 5 | instantiation | 29, 9, 10 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 57, 11, 12 | , , ⊢  |
| | : , :  |
| 7 | instantiation | 29, 13, 14 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 9 | instantiation | 57, 48, 15 | ⊢  |
| | : , :  |
| 10 | instantiation | 40, 16, 17 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 18, 19, 20 | , ⊢  |
| | : , :  |
| 12 | instantiation | 74, 64, 21 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 57, 48, 22 | ⊢  |
| | : , :  |
| 14 | instantiation | 40, 23, 24 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 57, 54, 26 | ⊢  |
| | : , :  |
| 16 | instantiation | 49, 47, 76, 50, 25, 51, 48, 54, 26 | ⊢  |
| | : , : , : , : , : , :  |
| 17 | instantiation | 49, 50, 76, 51, 52, 25, 58, 59, 54, 26 | ⊢  |
| | : , : , : , : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.addition.add_complex_closure_bin |
| 19 | instantiation | 29, 27, 28 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 29, 30, 31 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 74, 68, 32 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 57, 54, 34 | ⊢  |
| | : , :  |
| 23 | instantiation | 49, 47, 76, 50, 33, 51, 48, 54, 34 | ⊢  |
| | : , : , : , : , : , :  |
| 24 | instantiation | 49, 50, 76, 51, 52, 33, 58, 59, 54, 34 | ⊢  |
| | : , : , : , : , : , :  |
| 25 | instantiation | 60 | ⊢  |
| | : , :  |
| 26 | instantiation | 74, 64, 35 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 57, 48, 36 | ⊢  |
| | : , :  |
| 28 | instantiation | 40, 37, 38 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 30 | instantiation | 57, 48, 39 | ⊢  |
| | : , :  |
| 31 | instantiation | 40, 41, 42 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 74, 72, 43 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 60 | ⊢  |
| | : , :  |
| 34 | instantiation | 74, 64, 44 | ⊢  |
| | : , : , :  |
| 35 | assumption | | ⊢  |
| 36 | instantiation | 57, 54, 46 | ⊢  |
| | : , :  |
| 37 | instantiation | 49, 47, 76, 50, 45, 51, 48, 54, 46 | ⊢  |
| | : , : , : , : , : , :  |
| 38 | instantiation | 49, 50, 76, 51, 52, 45, 58, 59, 54, 46 | ⊢  |
| | : , : , : , : , : , :  |
| 39 | instantiation | 57, 54, 55 | ⊢  |
| | : , :  |
| 40 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 41 | instantiation | 49, 47, 76, 50, 53, 51, 48, 54, 55 | ⊢  |
| | : , : , : , : , : , :  |
| 42 | instantiation | 49, 50, 76, 51, 52, 53, 58, 59, 54, 55 | ⊢  |
| | : , : , : , : , : , :  |
| 43 | assumption | | ⊢  |
| 44 | assumption | | ⊢  |
| 45 | instantiation | 60 | ⊢  |
| | : , :  |
| 46 | instantiation | 74, 64, 56 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 48 | instantiation | 57, 58, 59 | ⊢  |
| | : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 50 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 51 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 52 | instantiation | 60 | ⊢  |
| | : , :  |
| 53 | instantiation | 60 | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.i_is_complex |
| 55 | instantiation | 74, 64, 61 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 74, 68, 62 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 58 | instantiation | 74, 64, 63 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 74, 64, 65 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 61 | instantiation | 74, 70, 66 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 74, 72, 67 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 74, 68, 69 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 65 | instantiation | 74, 70, 71 | ⊢  |
| | : , : , :  |
| 66 | assumption | | ⊢  |
| 67 | assumption | | ⊢  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 69 | instantiation | 74, 72, 73 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 72 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 73 | instantiation | 74, 75, 76 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |