logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation6, 4, 30, 7, 10, 8, 5, 11, 12  ⊢  
  : , : , : , : , : , :
3instantiation6, 7, 30, 8, 9, 10, 14, 15, 11, 12  ⊢  
  : , : , : , : , : , :
4theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
5instantiation13, 14, 15  ⊢  
  : , :
6theorem  ⊢  
 proveit.numbers.multiplication.disassociation
7axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
8theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
9instantiation16  ⊢  
  : , :
10instantiation16  ⊢  
  : , :
11theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.i_is_complex
12instantiation28, 19, 17  ⊢  
  : , : , :
13theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
14instantiation28, 19, 18  ⊢  
  : , : , :
15instantiation28, 19, 20  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
17instantiation28, 24, 21  ⊢  
  : , : , :
18instantiation28, 22, 23  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
20instantiation28, 24, 25  ⊢  
  : , : , :
21assumption  ⊢  
22theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
23instantiation28, 26, 27  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
25theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
26theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
27instantiation28, 29, 30  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
29theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
30theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2